Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

AdaptVQEResult

class AdaptVQEResult

GitHub

Bases: qiskit.algorithms.minimum_eigensolvers.vqe.VQEResult

AdaptVQE Result.


Methods

combine

AdaptVQEResult.combine(result)

Any property from the argument that exists in the receiver is updated. :type result: AlgorithmResult :param result: Argument result with properties to be set.

Raises

TypeError – Argument is None

Return type

None


Attributes

aux_operators_evaluated

The aux operator expectation values.

These values are in fact tuples formatted as (mean, (variance, shots)).

cost_function_evals

The number of cost optimizer evaluations.

Return type

int | None

eigenvalue

The computed minimum eigenvalue.

Return type

complex | None

eigenvalue_history

Returns the history of computed eigenvalues.

The history’s length matches the number of iterations and includes the final computed value.

final_max_gradient

Returns the final maximum gradient.

Return type

float

num_iterations

Returns the number of iterations.

Return type

int

optimal_circuit

The optimal circuits. Along with the optimal parameters, these can be used to retrieve the minimum eigenstate.

Return type

QuantumCircuit

optimal_parameters

Returns the optimal parameters in a dictionary

Return type

Optional[Dict]

optimal_point

Returns optimal point

Return type

Optional[ndarray]

optimal_value

Returns optimal value

Return type

Optional[float]

optimizer_evals

Returns number of optimizer evaluations

Return type

Optional[int]

optimizer_result

Returns the optimizer result

Return type

Optional[OptimizerResult]

optimizer_time

Returns time taken for optimization

Return type

Optional[float]

termination_criterion

Returns the termination criterion.

Return type

str

Was this page helpful?
Report a bug or request content on GitHub.