Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

MatrixFunctional

class MatrixFunctional(main_diag, off_diag)

GitHub

Bases: qiskit.algorithms.linear_solvers.observables.linear_system_observable.LinearSystemObservable

The deprecated class for the matrix functional of the vector solution to the linear systems.

Examples:

import warnings
import numpy as np
from qiskit import QuantumCircuit
from qiskit.algorithms.linear_solvers.observables.matrix_functional import             MatrixFunctional
from qiskit.transpiler.passes import RemoveResetInZeroState
from qiskit.opflow import StateFn
 
tpass = RemoveResetInZeroState()
 
vector = [1.0, -2.1, 3.2, -4.3]
with warnings.catch_warnings():
    warnings.simplefilter('ignore')
    observable = MatrixFunctional(1, -1 / 3)
 
init_state = vector / np.linalg.norm(vector)
num_qubits = int(np.log2(len(vector)))
 
# Get observable circuits
obs_circuits = observable.observable_circuit(num_qubits)
qcs = []
for obs_circ in obs_circuits:
    qc = QuantumCircuit(num_qubits)
    qc.isometry(init_state, list(range(num_qubits)), None)
    qc.append(obs_circ, list(range(num_qubits)))
    qcs.append(tpass(qc.decompose()))
 
# Get observables
observable_ops = observable.observable(num_qubits)
state_vecs = []
# First is the norm
state_vecs.append((~StateFn(observable_ops[0]) @ StateFn(qcs[0])).eval())
for i in range(1, len(observable_ops), 2):
    state_vecs += [(~StateFn(observable_ops[i]) @ StateFn(qcs[i])).eval(),
                   (~StateFn(observable_ops[i + 1]) @ StateFn(qcs[i + 1])).eval()]
 
# Obtain result
result = observable.post_processing(state_vecs, num_qubits)
 
# Obtain analytical evaluation
exact = observable.evaluate_classically(init_state)

Parameters

  • main_diag (float) – The main diagonal of the tridiagonal Toeplitz symmetric matrix to compute the functional.
  • off_diag (int) – The off diagonal of the tridiagonal Toeplitz symmetric matrix to compute the functional.

Methods

evaluate_classically

MatrixFunctional.evaluate_classically(solution)

Evaluates the given observable on the solution to the linear system.

Parameters

solution (Union[array, QuantumCircuit]) – The solution to the system as a numpy array or the circuit that prepares it.

Return type

float

Returns

The value of the observable.

observable

MatrixFunctional.observable(num_qubits)

The observable operators.

Parameters

num_qubits (int) – The number of qubits on which the observable will be applied.

Return type

Union[TensoredOp, List[TensoredOp]]

Returns

The observable as a list of sums of Pauli strings.

observable_circuit

MatrixFunctional.observable_circuit(num_qubits)

The circuits to implement the matrix functional observable.

Parameters

num_qubits (int) – The number of qubits on which the observable will be applied.

Return type

Union[QuantumCircuit, List[QuantumCircuit]]

Returns

The observable as a list of QuantumCircuits.

post_processing

MatrixFunctional.post_processing(solution, num_qubits, scaling=1)

Evaluates the matrix functional on the solution to the linear system.

Parameters

  • solution (Union[float, List[float]]) – The list of probabilities calculated from the circuit and the observable.
  • num_qubits (int) – The number of qubits where the observable was applied.
  • scaling (float) – Scaling of the solution.

Return type

float

Returns

The value of the absolute average.

Raises

ValueError – If the input is not in the correct format.

Was this page helpful?
Report a bug or request content on GitHub.