FiniteDiffEstimatorGradient
class FiniteDiffEstimatorGradient(estimator, epsilon, options=None, *, method='central')
Bases: qiskit.algorithms.gradients.base_estimator_gradient.BaseEstimatorGradient
Compute the gradients of the expectation values by finite difference method [1].
Reference: [1] Finite difference method
Parameters
-
estimator (BaseEstimator) – The estimator used to compute the gradients.
-
epsilon (float) – The offset size for the finite difference gradients.
-
options (Options | None) – Primitive backend runtime options used for circuit execution. The order of priority is: options in
run
method > gradient’s default options > primitive’s default setting. Higher priority setting overrides lower priority setting -
method (Literal[('central', 'forward', 'backward')]) –
The computation method of the gradients.
central
computes ,forward
computes ,backward
computes
where is epsilon.
Raises
- ValueError – If
epsilon
is not positive. - TypeError – If
method
is invalid.
Methods
run
FiniteDiffEstimatorGradient.run(circuits, observables, parameter_values, parameters=None, **options)
Run the job of the estimator gradient on the given circuits.
Parameters
- circuits – The list of quantum circuits to compute the gradients.
- observables – The list of observables.
- parameter_values – The list of parameter values to be bound to the circuit.
- parameters – The sequence of parameters to calculate only the gradients of the specified parameters. Each sequence of parameters corresponds to a circuit in
circuits
. Defaults to None, which means that the gradients of all parameters in each circuit are calculated. - options – Primitive backend runtime options used for circuit execution. The order of priority is: options in
run
method > gradient’s default options > primitive’s default setting. Higher priority setting overrides lower priority setting
Returns
The job object of the gradients of the expectation values. The i-th result corresponds to circuits[i]
evaluated with parameters bound as parameter_values[i]
. The j-th element of the i-th result corresponds to the gradient of the i-th circuit with respect to the j-th parameter.
Raises
ValueError – Invalid arguments are given.
update_default_options
FiniteDiffEstimatorGradient.update_default_options(**options)
Update the gradient’s default options setting.
Parameters
**options – The fields to update the default options.
Attributes
derivative_type
Return the derivative type (real, imaginary or complex).
Return type
Returns
The derivative type.
options
Return the union of estimator options setting and gradient default options, where, if the same field is set in both, the gradient’s default options override the primitive’s default setting.
Return type
Returns
The gradient default + estimator options.