qiskit.visualization.plot_state_qsphere
plot_state_qsphere(state, figsize=None, ax=None, show_state_labels=True, show_state_phases=False, use_degrees=False, *, rho=None, filename=None)
Plot the qsphere representation of a quantum state. Here, the size of the points is proportional to the probability of the corresponding term in the state and the color represents the phase.
Parameters
- state (Statevector orDensityMatrix or ndarray) – an N-qubit quantum state.
- figsize (tuple) – Figure size in inches.
- ax (matplotlib.axes.Axes) – An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.
- show_state_labels (bool) – An optional boolean indicating whether to show labels for each basis state.
- show_state_phases (bool) – An optional boolean indicating whether to show the phase for each basis state.
- use_degrees (bool) – An optional boolean indicating whether to use radians or degrees for the phase values in the plot.
Returns
A matplotlib figure instance if the ax
kwarg is not set
Return type
Figure
Raises
- MissingOptionalLibraryError – Requires matplotlib.
- VisualizationError – if input is not a valid N-qubit state.
- QiskitError – Input statevector does not have valid dimensions.
Examples
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = Statevector(qc)
plot_state_qsphere(state)
# You can show the phase of each state and use
# degrees instead of radians
from qiskit.quantum_info import DensityMatrix
import numpy as np
from qiskit import QuantumCircuit
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.cz(0,1)
qc.ry(np.pi/3, 0)
qc.rx(np.pi/5, 1)
qc.z(1)
matrix = DensityMatrix(qc)
plot_state_qsphere(matrix,
show_state_phases = True, use_degrees = True)
Was this page helpful?
Report a bug or request content on GitHub.