Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

DerivativeBase

class DerivativeBase

GitHub

Bases: qiskit.opflow.converters.converter_base.ConverterBase

Base class for differentiating opflow objects.

Converter for differentiating opflow objects and handling things like properly differentiating combo_fn’s and enforcing product rules when operator coefficients are parameterized.

This is distinct from CircuitGradient converters which use quantum techniques such as parameter shifts and linear combination of unitaries to compute derivatives of circuits.

CircuitGradient - uses quantum techniques to get derivatives of circuits DerivativeBase - uses classical techniques to differentiate opflow data structures


Methods Defined Here

convert

abstract DerivativeBase.convert(operator, params=None)

Parameters

Return type

OperatorBase

Returns

An operator whose evaluation yields the gradient, Hessian or QFI.

Raises

ValueError – If params contains a parameter not present in operator.

gradient_wrapper

DerivativeBase.gradient_wrapper(operator, bind_params, grad_params=None, backend=None, expectation=None)

Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.

Parameters

Return type

Callable[[Iterable], ndarray]

Returns

Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.

parameter_expression_grad

static DerivativeBase.parameter_expression_grad(param_expr, param)

Get the derivative of a parameter expression w.r.t. the given parameter.

Parameters

Return type

Union[ParameterExpression, float]

Returns

ParameterExpression representing the gradient of param_expr w.r.t. param

Was this page helpful?
Report a bug or request content on GitHub.