Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

WeightedAdder

class WeightedAdder(num_state_qubits=None, weights=None, name='adder')

GitHub

Bases: qiskit.circuit.library.blueprintcircuit.BlueprintCircuit

A circuit to compute the weighted sum of qubit registers.

Given nn qubit basis states q0,,qn1{0,1}q_0, \ldots, q_{n-1} \in \{0, 1\} and non-negative integer weights λ0,,λn1\lambda_0, \ldots, \lambda_{n-1}, this circuit performs the operation

q0qn10sq0qn1j=0n1λjqjs|q_0 \ldots q_{n-1}\rangle |0\rangle_s \mapsto |q_0 \ldots q_{n-1}\rangle |\sum_{j=0}^{n-1} \lambda_j q_j\rangle_s

where ss is the number of sum qubits required. This can be computed as

s=1+log2(j=0n1λj)s = 1 + \left\lfloor \log_2\left( \sum_{j=0}^{n-1} \lambda_j \right) \right\rfloor

or s=1s = 1 if the sum of the weights is 0 (then the expression in the logarithm is invalid).

For qubits in a circuit diagram, the first weight applies to the upper-most qubit. For an example where the state of 4 qubits is added into a sum register, the circuit can be schematically drawn as

           ┌────────┐
  state_0:0| state_0 * weights[0]
           │        │ |
  state_1:1| + state_1 * weights[1]
           │        │ |
  state_2:2| + state_2 * weights[2]
           │        │ |
  state_3:3| + state_3 * weights[3]
           │        │
    sum_0:4|
           │  Adder │ |
    sum_1:5| = sum_0 * 2^0 + sum_1 * 2^1 + sum_2 * 2^2
           │        │ |
    sum_2:6|
           │        │
  carry_0:7
           │        │
  carry_1:8
           │        │
control_0:9
           └────────┘

Computes the weighted sum controlled by state qubits.

Parameters

  • num_state_qubits (Optional[int]) – The number of state qubits.
  • weights (Optional[List[int]]) – List of weights, one for each state qubit. If none are provided they default to 1 for every qubit.
  • name (str) – The name of the circuit.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

Return type

List[AncillaQubit]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

Return type

dict

clbits

Returns a list of classical bits in the order that the registers were added.

Return type

List[Clbit]

data

extension_lib

Default value: 'include "qelib1.inc";'

global_phase

Return the global phase of the circuit in radians.

Return type

Union[ParameterExpression, float]

Default value: 'OPENQASM 2.0;'

instances

Default value: 2737

metadata

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

Return type

dict

num_ancillas

Return the number of ancilla qubits.

Return type

int

num_carry_qubits

The number of carry qubits required to compute the sum.

Note that this is not necessarily equal to the number of ancilla qubits, these can be queried using num_ancilla_qubits.

Return type

int

Returns

The number of carry qubits required to compute the sum.

num_clbits

Return number of classical bits.

Return type

int

num_control_qubits

The number of additional control qubits required.

Note that the total number of ancilla qubits can be obtained by calling the method num_ancilla_qubits.

Return type

int

Returns

The number of additional control qubits required (0 or 1).

num_parameters

Return type

int

num_qubits

Return number of qubits.

Return type

int

num_state_qubits

The number of qubits to be summed.

Return type

int

Returns

The number of state qubits.

num_sum_qubits

The number of sum qubits in the circuit.

Return type

int

Returns

The number of qubits needed to represent the weighted sum of the qubits.

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Return type

List[int]

Returns

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Raises

AttributeError – When circuit is not scheduled.

parameters

Return type

ParameterView

prefix

Default value: 'circuit'

qregs

A list of the quantum registers associated with the circuit.

qubits

Returns a list of quantum bits in the order that the registers were added.

Return type

List[Qubit]

weights

The weights for the qubit states.

Return type

List[int]

Returns

The weight for the qubit states.

Was this page helpful?
Report a bug or request content on GitHub.