RGQFTMultiplier
class RGQFTMultiplier(num_state_qubits, num_result_qubits=None, name='RGQFTMultiplier')
Bases: qiskit.circuit.library.arithmetic.multipliers.multiplier.Multiplier
A QFT multiplication circuit to store product of two input registers out-of-place.
Multiplication in this circuit is implemented using the procedure of Fig. 3 in [1], where weighted sum rotations are implemented as given in Fig. 5 in [1]. QFT is used on the output register and is followed by rotations controlled by input registers. The rotations transform the state into the product of two input registers in QFT base, which is reverted from QFT base using inverse QFT. As an example, a circuit that performs a modular QFT multiplication on two 2-qubit sized input registers with an output register of 2 qubits, is as follows:
a_0: ────────────────────────────────────────■───────■──────■──────■────────────────
│ │ │ │
a_1: ─────────■───────■───────■───────■──────┼───────┼──────┼──────┼────────────────
│ │ │ │ │ │ │ │
b_0: ─────────┼───────┼───────■───────■──────┼───────┼──────■──────■────────────────
│ │ │ │ │ │ │ │
b_1: ─────────■───────■───────┼───────┼──────■───────■──────┼──────┼────────────────
┌──────┐ │P(4π) │ │P(2π) │ │P(2π) │ │P(π) │ ┌───────┐
out_0: ┤0 ├─■───────┼───────■───────┼──────■───────┼──────■──────┼───────┤0 ├
│ qft │ │P(2π) │P(π) │P(π) │P(π/2) │ iqft │
out_1: ┤1 ├─────────■───────────────■──────────────■─────────────■───────┤1 ├
└──────┘ └───────┘
References:
[1] Ruiz-Perez et al., Quantum arithmetic with the Quantum Fourier Transform, 2017. arXiv:1411.5949
Parameters
- num_state_qubits (
int
) – The number of qubits in either input register for state or . The two input registers must have the same number of qubits. - num_result_qubits (
Optional
[int
]) – The number of result qubits to limit the output to. If number of result qubits is , multiplication modulo is performed to limit the output to the specified number of qubits. Default value is2 * num_state_qubits
to represent any possible result from the multiplication of the two inputs. - name (
str
) – The name of the circuit object.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
Return type
dict
clbits
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the CircuitInstruction
s for each instruction.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 2737
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
The number of parameter objects in the circuit.
Return type
int
num_qubits
Return number of qubits.
Return type
int
num_result_qubits
The number of result qubits to limit the output to.
Return type
int
Returns
The number of result qubits.
num_state_qubits
The number of state qubits, i.e. the number of bits in each input register.
Return type
int
Returns
The number of state qubits.
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Return type
List
[int
]
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
parameters
The parameters defined in the circuit.
This attribute returns the Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector
are still sorted numerically.
Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a ParameterVector
can be used.
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Return type
ParameterView
Returns
The sorted Parameter
objects in the circuit.
prefix
Default value: 'circuit'