PauliFeatureMap
class PauliFeatureMap(feature_dimension=None, reps=2, entanglement='full', alpha=2.0, paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='PauliFeatureMap')
Bases: qiskit.circuit.library.n_local.n_local.NLocal
The Pauli Expansion circuit.
The Pauli Expansion circuit is a data encoding circuit that transforms input data as
The circuit contains reps
repetitions of this transformation. The variable denotes the Pauli matrices. The index describes connectivities between different qubits or datapoints: . Per default the data-mapping is
For example, if the Pauli strings are chosen to be and on 2 qubits and with 1 repetition using the default data-mapping, the Pauli evolution feature map is represented by:
┌───┐┌──────────────┐┌──────────┐ ┌───────────┐
┤ H ├┤ U1(2.0*x[0]) ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├
├───┤├──────────────┤├──────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───────────┤
┤ H ├┤ U1(2.0*x[1]) ├┤ RX(pi/2) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ RX(-pi/2) ├
└───┘└──────────────┘└──────────┘└───┘└─────────────────────────────────┘└───┘└───────────┘
Please refer to ZFeatureMap
for the case , and to ZZFeatureMap
for the case , and .
Examples
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZZ'])
>>> print(prep)
┌───┐
q_0: ┤ H ├──■───────────────────────────────────────■──
├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐
q_1: ┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├
└───┘└───┘└─────────────────────────────────┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['Z', 'XX'])
>>> print(prep)
┌───┐┌──────────────┐┌───┐ ┌───┐
q_0: ┤ H ├┤ U1(2.0*x[0]) ├┤ H ├──■───────────────────────────────────────■──┤ H ├
├───┤├──────────────┤├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───┤
q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ H ├
└───┘└──────────────┘└───┘└───┘└─────────────────────────────────┘└───┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZY'])
>>> print(prep)
┌───┐┌──────────┐ ┌───────────┐
q_0: ┤ H ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├
├───┤└──────────┘┌─┴─┐┌─────────────────────────────────┐┌─┴─┐└───────────┘
q_1: ┤ H ├────────────┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├─────────────
└───┘ └───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2
>>> prep = PauliFeatureMap(3, reps=3, paulis=['Z', 'YY', 'ZXZ'])
>>> wavefunction = EfficientSU2(3)
>>> classifier = prep.compose(wavefunction
>>> classifier.num_parameters
27
>>> classifier.count_ops()
OrderedDict([('cx', 39), ('rx', 36), ('u1', 21), ('h', 15), ('ry', 12), ('rz', 12)])
References
[1]: Havlicek et al. (2018), Supervised learning with quantum enhanced feature spaces.
Create a new Pauli expansion circuit.
Parameters
- feature_dimension (
Optional
[int
]) – Number of qubits in the circuit. - reps (
int
) – The number of repeated circuits. - entanglement (
Union
[str
,List
[List
[int
]],Callable
[[int
],List
[int
]]]) – Specifies the entanglement structure. Refer toNLocal
for detail. - alpha (
float
) – The Pauli rotation factor, multiplicative to the pauli rotations - paulis (
Optional
[List
[str
]]) – A list of strings for to-be-used paulis. If None are provided,['Z', 'ZZ']
will be used. - data_map_func (
Optional
[Callable
[[ndarray
],float
]]) – A mapping function for data x which can be supplied to override the default mapping fromself_product()
. - parameter_prefix (
str
) – The prefix used if default parameters are generated. - insert_barriers (
bool
) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
Methods Defined Here
pauli_block
PauliFeatureMap.pauli_block(pauli_string)
Get the Pauli block for the feature map circuit.
pauli_evolution
PauliFeatureMap.pauli_evolution(pauli_string, time)
Get the evolution block for the given pauli string.
Attributes
alpha
The Pauli rotation factor (alpha).
Return type
float
Returns
The Pauli rotation factor.
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
Return type
dict
clbits
data
entanglement
Get the entanglement strategy.
Return type
Union
[str
, List
[str
], List
[List
[str
]], List
[int
], List
[List
[int
]], List
[List
[List
[int
]]], List
[List
[List
[List
[int
]]]], Callable
[[int
], str
], Callable
[[int
], List
[List
[int
]]]]
Returns
The entanglement strategy, see get_entangler_map()
for more detail on how the format is interpreted.
entanglement_blocks
extension_lib
Default value: 'include "qelib1.inc";'
feature_dimension
Returns the feature dimension (which is equal to the number of qubits).
Return type
int
Returns
The feature dimension of this feature map.
global_phase
header
Default value: 'OPENQASM 2.0;'
initial_state
Return the initial state that is added in front of the n-local circuit.
Return type
Returns
The initial state.
insert_barriers
If barriers are inserted in between the layers or not.
Return type
bool
Returns
True
, if barriers are inserted in between the layers, False
if not.
instances
Default value: 2404
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_layers
Return the number of layers in the n-local circuit.
Return type
int
Returns
The number of layers in the circuit.
num_parameters
Return type
int
num_parameters_settable
The number of distinct parameters.
num_qubits
Returns the number of qubits in this circuit.
Return type
int
Returns
The number of qubits.
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Return type
List
[int
]
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
ordered_parameters
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
Return type
List
[Parameter
]
Returns
The parameters objects used in the circuit.
parameter_bounds
The parameter bounds for the unbound parameters in the circuit.
Return type
Optional
[List
[Tuple
[float
, float
]]]
Returns
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None
is returned, problem is fully unbounded.
parameters
Return type
ParameterView
paulis
The Pauli strings used in the entanglement of the qubits.
Return type
List
[str
]
Returns
The Pauli strings as list.
preferred_init_points
The initial points for the parameters. Can be stored as initial guess in optimization.
Return type
Optional
[List
[float
]]
Returns
The initial values for the parameters, or None, if none have been set.
prefix
Default value: 'circuit'
qregs
A list of the quantum registers associated with the circuit.
qubits
reps
The number of times rotation and entanglement block are repeated.
Return type
int
Returns
The number of repetitions.
rotation_blocks
The blocks in the rotation layers.
Return type
List
[Instruction
]
Returns
The blocks in the rotation layers.