LinearPauliRotations
class LinearPauliRotations(num_state_qubits=None, slope=1, offset=0, basis='Y', name='LinRot')
Bases: qiskit.circuit.library.arithmetic.functional_pauli_rotations.FunctionalPauliRotations
Linearly-controlled X, Y or Z rotation.
For a register of state qubits , a target qubit and the basis 'Y'
this circuit acts as:
q_0: ─────────────────────────■───────── ... ──────────────────────
│
.
│
q_(n-1): ─────────────────────────┼───────── ... ───────────■──────────
┌────────────┐ ┌───────┴───────┐ ┌─────────┴─────────┐
q_n: ─┤ RY(offset) ├──┤ RY(2^0 slope) ├ ... ┤ RY(2^(n-1) slope) ├
└────────────┘ └───────────────┘ └───────────────────┘
This can for example be used to approximate linear functions, with slope
and offset
and the basis 'Y'
:
Since for small arguments this operator can be used to approximate linear functions.
Create a new linear rotation circuit.
Parameters
- num_state_qubits (
Optional
[int
]) – The number of qubits representing the state . - slope (
float
) – The slope of the controlled rotation. - offset (
float
) – The offset of the controlled rotation. - basis (
str
) – The type of Pauli rotation (‘X’, ‘Y’, ‘Z’). - name (
str
) – The name of the circuit object.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
basis
The kind of Pauli rotation to be used.
Set the basis to ‘X’, ‘Y’ or ‘Z’ for controlled-X, -Y, or -Z rotations respectively.
Return type
str
Returns
The kind of Pauli rotation used in controlled rotation.
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
Return type
dict
clbits
data
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 2368
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancilla_qubits
The minimum number of ancilla qubits in the circuit.
Return type
int
Returns
The minimal number of ancillas required.
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
Return type
int
num_qubits
Return number of qubits.
Return type
int
num_state_qubits
The number of state qubits representing the state .
Return type
int
Returns
The number of state qubits.
offset
The angle of the single qubit offset rotation on the target qubit.
Before applying the controlled rotations, a single rotation of angle offset
is applied to the target qubit.
Return type
float
Returns
The offset angle.
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Return type
List
[int
]
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
parameters
Return type
ParameterView
prefix
Default value: 'circuit'
qregs
A list of the quantum registers associated with the circuit.
qubits
slope
The multiplicative factor in the rotation angle of the controlled rotations.
The rotation angles are slope * 2^0
, slope * 2^1
, … , slope * 2^(n-1)
where n
is the number of state qubits.
Return type
float
Returns
The rotation angle common in all controlled rotations.