HiddenLinearFunction
class HiddenLinearFunction(adjacency_matrix)
Bases: qiskit.circuit.quantumcircuit.QuantumCircuit
Circuit to solve the hidden linear function problem.
The 2D Hidden Linear Function problem is determined by a 2D adjacency matrix A, where only elements that are nearest-neighbor on a grid have non-zero entries. Each row/column corresponds to one binary variable .
The hidden linear function problem is as follows:
Consider the quadratic form
and restrict onto the nullspace of A. This results in a linear function.
and the goal is to recover this linear function (equivalently a vector ). There can be multiple solutions.
In [1] it is shown that the present circuit solves this problem on a quantum computer in constant depth, whereas any corresponding solution on a classical computer would require circuits that grow logarithmically with . Thus this circuit is an example of quantum advantage with shallow circuits.
Reference Circuit:
Reference:
[1] S. Bravyi, D. Gosset, R. Koenig, Quantum Advantage with Shallow Circuits, 2017. arXiv:1704.00690
Create new HLF circuit.
Parameters
adjacency_matrix (Union
[List
[List
[int
]], ndarray
]) – a symmetric n-by-n list of 0-1 lists. n will be the number of qubits.
Raises
CircuitError – If A is not symmetric.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}
Return type
dict
clbits
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the CircuitInstruction
s for each instruction.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 2342
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
The number of parameter objects in the circuit.
Return type
int
num_qubits
Return number of qubits.
Return type
int
op_start_times
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
Return type
List
[int
]
Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data
.
Raises
AttributeError – When circuit is not scheduled.
parameters
The parameters defined in the circuit.
This attribute returns the Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector
are still sorted numerically.
Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a ParameterVector
can be used.
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Return type
ParameterView
Returns
The sorted Parameter
objects in the circuit.
prefix
Default value: 'circuit'