Barrier
class Barrier(num_qubits, label=None)
Bases: qiskit.circuit.instruction.Instruction
Barrier instruction.
A barrier is a visual indicator of the grouping of a circuit section. It also acts as a directive for circuit compilation to separate pieces of a circuit so that any optimizations or re-writes are constrained to only act between barriers.
Create new barrier instruction.
Parameters
- num_qubits (int) – the number of qubits for the barrier type [Default: 0].
- label (str) – the barrier label
Raises
TypeError – if barrier label is invalid.
Methods
add_decomposition
Barrier.add_decomposition(decomposition)
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
assemble
Barrier.assemble()
Assemble a QasmQobjInstruction
broadcast_arguments
Barrier.broadcast_arguments(qargs, cargs)
Validation of the arguments.
Parameters
- qargs (List) – List of quantum bit arguments.
- cargs (List) – List of classical bit arguments.
Yields
Tuple(List, List) – A tuple with single arguments.
Raises
CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.
c_if
Barrier.c_if(classical, val)
Set a classical equality condition on this instruction between the register or cbit classical
and value val
.
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
copy
Barrier.copy(name=None)
Copy of the instruction.
Parameters
name (str) – name to be given to the copied circuit, if None then the name stays the same.
Returns
a copy of the current instruction, with the name
updated if it was provided
Return type
inverse
Barrier.inverse()
Special case. Return self.
is_parameterized
Barrier.is_parameterized()
Return True .IFF. instruction is parameterized else False
qasm
Barrier.qasm()
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).
repeat
Barrier.repeat(n)
Creates an instruction with gate repeated n amount of times.
Parameters
n (int) – Number of times to repeat the instruction
Returns
Containing the definition.
Return type
Raises
CircuitError – If n < 1.
reverse_ops
Barrier.reverse_ops()
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
Returns
a new instruction with
sub-instructions reversed.
Return type
soft_compare
Barrier.soft_compare(other)
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
Parameters
other (instruction) – other instruction.
Returns
are self and other equal up to parameter expressions.
Return type
bool
validate_parameter
Barrier.validate_parameter(parameter)
Instruction parameters has no validation or normalization.
Attributes
condition_bits
decompositions
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
definition
Return definition in terms of other basic gates.
duration
Get the duration.
label
Return instruction label
Return type
str
name
Return the name.
num_clbits
Return the number of clbits.
num_qubits
Return the number of qubits.
params
return instruction params.
unit
Get the time unit of duration.