Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

POWELL

class POWELL(maxiter=None, maxfev=1000, disp=False, xtol=0.0001, tol=None, options=None, **kwargs)

GitHub

Bases: qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer

Powell optimizer.

The Powell algorithm performs unconstrained optimization; it ignores bounds or constraints. Powell is a conjugate direction method: it performs sequential one-dimensional minimization along each directional vector, which is updated at each iteration of the main minimization loop. The function being minimized need not be differentiable, and no derivatives are taken.

Uses scipy.optimize.minimize Powell. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters

  • maxiter (Optional[int]) – Maximum allowed number of iterations. If both maxiter and maxfev are set, minimization will stop at the first reached.
  • maxfev (int) – Maximum allowed number of function evaluations. If both maxiter and maxfev are set, minimization will stop at the first reached.
  • disp (bool) – Set to True to print convergence messages.
  • xtol (float) – Relative error in solution xopt acceptable for convergence.
  • tol (Optional[float]) – Tolerance for termination.
  • options (Optional[dict]) – A dictionary of solver options.
  • kwargs – additional kwargs for scipy.optimize.minimize.

Methods

get_support_level

POWELL.get_support_level()

Return support level dictionary

gradient_num_diff

static POWELL.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

minimize

POWELL.minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

POWELL.print_options()

Print algorithm-specific options.

set_max_evals_grouped

POWELL.set_max_evals_grouped(limit)

Set max evals grouped

set_options

POWELL.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static POWELL.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.