Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

CG

class CG(maxiter=20, disp=False, gtol=1e-05, tol=None, eps=1.4901161193847656e-08, options=None, max_evals_grouped=1, **kwargs)

GitHub

Bases: qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer

Conjugate Gradient optimizer.

CG is an algorithm for the numerical solution of systems of linear equations whose matrices are symmetric and positive-definite. It is an iterative algorithm in that it uses an initial guess to generate a sequence of improving approximate solutions for a problem, in which each approximation is derived from the previous ones. It is often used to solve unconstrained optimization problems, such as energy minimization.

Uses scipy.optimize.minimize CG. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters

  • maxiter (int) – Maximum number of iterations to perform.
  • disp (bool) – Set to True to print convergence messages.
  • gtol (float) – Gradient norm must be less than gtol before successful termination.
  • tol (Optional[float]) – Tolerance for termination.
  • eps (float) – If jac is approximated, use this value for the step size.
  • options (Optional[dict]) – A dictionary of solver options.
  • max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
  • kwargs – additional kwargs for scipy.optimize.minimize.

Methods

get_support_level

CG.get_support_level()

Return support level dictionary

gradient_num_diff

static CG.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).

Returns

the gradient computed

Return type

grad

minimize

CG.minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

CG.print_options()

Print algorithm-specific options.

set_max_evals_grouped

CG.set_max_evals_grouped(limit)

Set max evals grouped

set_options

CG.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static CG.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.