AQGD
class AQGD(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10)
Bases: qiskit.algorithms.optimizers.optimizer.Optimizer
Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parameterized quantum gates, i.e. Pauli Rotations. See, for example:
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
- Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184
for further details on analytic gradients of parameterized quantum gates.
Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.
Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
Parameters
- maxiter (
Union
[int
,List
[int
]]) – Maximum number of iterations (full gradient steps) - eta (
Union
[float
,List
[float
]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv - tol (
float
) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met. - momentum (
Union
[float
,List
[float
]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1) - param_tol (
float
) – Tolerance for change in norm of parameters. - averaging (
int
) – Length of window over which to average objective values for objective convergence criterion
Raises
AlgorithmError – If the length of maxiter
, momentum`, and eta
is not the same.
Methods
get_support_level
AQGD.get_support_level()
Support level dictionary
Returns
gradient, bounds and initial point
support information that is ignored/required.
Return type
Dict[str, int]
gradient_num_diff
static AQGD.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped, defaults to 1 (i.e. no batching).
Returns
the gradient computed
Return type
grad
minimize
AQGD.minimize(fun, x0, jac=None, bounds=None)
Minimize the scalar function.
Parameters
- fun (
Callable
[[Union
[float
,ndarray
]],float
]) – The scalar function to minimize. - x0 (
Union
[float
,ndarray
]) – The initial point for the minimization. - jac (
Optional
[Callable
[[Union
[float
,ndarray
]],Union
[float
,ndarray
]]]) – The gradient of the scalar functionfun
. - bounds (
Optional
[List
[Tuple
[float
,float
]]]) – Bounds for the variables offun
. This argument might be ignored if the optimizer does not support bounds.
Return type
Returns
The result of the optimization, containing e.g. the result as attribute x
.
print_options
AQGD.print_options()
Print algorithm-specific options.
set_max_evals_grouped
AQGD.set_max_evals_grouped(limit)
Set max evals grouped
set_options
AQGD.set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
wrap_function
static AQGD.wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper
Attributes
bounds_support_level
Returns bounds support level
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
setting
Return setting
settings
Return type
Dict
[str
, Any
]