FiniteDiffSamplerGradient
class FiniteDiffSamplerGradient(sampler, epsilon, options=None, *, method='central')
Bases: qiskit.algorithms.gradients.base_sampler_gradient.BaseSamplerGradient
Compute the gradients of the sampling probability by finite difference method [1].
Reference: [1] Finite difference method
Parameters
-
sampler (BaseSampler) – The sampler used to compute the gradients.
-
epsilon (float) – The offset size for the finite difference gradients.
-
options (Options | None) – Primitive backend runtime options used for circuit execution. The order of priority is: options in
run
method > gradient’s default options > primitive’s default setting. Higher priority setting overrides lower priority setting -
method (Literal[('central', 'forward', 'backward')]) –
The computation method of the gradients.
central
computes ,forward
computes ,backward
computes
where is epsilon.
Raises
- ValueError – If
epsilon
is not positive. - TypeError – If
method
is invalid.
Methods
run
FiniteDiffSamplerGradient.run(circuits, parameter_values, parameters=None, **options)
Run the job of the sampler gradient on the given circuits.
Parameters
- circuits – The list of quantum circuits to compute the gradients.
- parameter_values – The list of parameter values to be bound to the circuit.
- parameters – The sequence of parameters to calculate only the gradients of the specified parameters. Each sequence of parameters corresponds to a circuit in
circuits
. Defaults to None, which means that the gradients of all parameters in each circuit are calculated. - options – Primitive backend runtime options used for circuit execution. The order of priority is: options in
run
method > gradient’s default options > primitive’s default setting. Higher priority setting overrides lower priority setting
Returns
The job object of the gradients of the sampling probability. The i-th result corresponds to circuits[i]
evaluated with parameters bound as parameter_values[i]
. The j-th quasi-probability distribution in the i-th result corresponds to the gradients of the sampling probability for the j-th parameter in circuits[i]
.
Raises
ValueError – Invalid arguments are given.
update_default_options
FiniteDiffSamplerGradient.update_default_options(**options)
Update the gradient’s default options setting.
Parameters
**options – The fields to update the default options.
Attributes
options
Return the union of sampler options setting and gradient default options, where, if the same field is set in both, the gradient’s default options override the primitive’s default setting.
Return type
Returns
The gradient default + sampler options.