Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

RYYGate

class RYYGate(theta, label=None)

GitHub

Bases: qiskit.circuit.gate.Gate

A parametric 2-qubit YYY \otimes Y interaction (rotation about YY).

This gate is symmetric, and is maximally entangling at θ=π/2\theta = \pi/2.

Can be applied to a QuantumCircuit with the ryy() method.

Circuit Symbol:

     ┌─────────┐
q_0:1
Ryy(ϴ)
q_1:0
     └─────────┘

Matrix Representation:

RYY(θ)=exp(iθ2YY)=(cos(θ2)00isin(θ2)0cos(θ2)isin(θ2)00isin(θ2)cos(θ2)0isin(θ2)00cos(θ2))\providecommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{YY}(\theta) = \exp\left(-i \th Y{\otimes}Y\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}

Examples:

RYY(θ=0)=IR_{YY}(\theta = 0) = I RYY(θ=π)=iYYR_{YY}(\theta = \pi) = i Y \otimes Y RYY(θ=π2)=12(100i01i00i10i001)\begin{split}R_{YY}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix}\end{split}

Create new RYY gate.


Methods Defined Here

inverse

RYYGate.inverse()

Return inverse RYY gate (i.e. with the negative rotation angle).


Attributes

condition_bits

Get Clbits in condition.

Return type

List[Clbit]

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

Return type

str

name

Return the name.

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

return instruction params.

unit

Get the time unit of duration.

Was this page helpful?
Report a bug or request content on GitHub.