Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

GradientDescent

class GradientDescent(maxiter=100, learning_rate=0.01, tol=1e-07, callback=None, perturbation=None)

GitHub

Bases: qiskit.algorithms.optimizers.optimizer.Optimizer

The gradient descent minimization routine.

For a function ff and an initial point θ0\vec\theta_0, the standard (or “vanilla”) gradient descent method is an iterative scheme to find the minimum θ\vec\theta^* of ff by updating the parameters in the direction of the negative gradient of ff

θn+1=θnηf(θn),\vec\theta_{n+1} = \vec\theta_{n} - \vec\eta\nabla f(\vec\theta_{n}),

for a small learning rate η>0\eta > 0.

You can either provide the analytic gradient f\vec\nabla f as gradient_function in the optimize method, or, if you do not provide it, use a finite difference approximation of the gradient. To adapt the size of the perturbation in the finite difference gradients, set the perturbation property in the initializer.

This optimizer supports a callback function. If provided in the initializer, the optimizer will call the callback in each iteration with the following information in this order: current number of function values, current parameters, current function value, norm of current gradient.

Examples

A minimum example that will use finite difference gradients with a default perturbation of 0.01 and a default learning rate of 0.01.

from qiskit.algorithms.optimizers import GradientDescent
 
def f(x):
    return (np.linalg.norm(x) - 1) ** 2
 
initial_point = np.array([1, 0.5, -0.2])
 
optimizer = GradientDescent(maxiter=100)
x_opt, fx_opt, nfevs = optimizer.optimize(initial_point.size,
                                          f,
                                          initial_point=initial_point)
 
print(f"Found minimum {x_opt} at a value of {fx_opt} using {nfevs} evaluations.")

An example where the learning rate is an iterator and we supply the analytic gradient. Note how much faster this convergences (i.e. less nfevs) compared to the previous example.

from qiskit.algorithms.optimizers import GradientDescent
 
def learning_rate():
    power = 0.6
    constant_coeff = 0.1
 
    def powerlaw():
        n = 0
        while True:
            yield constant_coeff * (n ** power)
            n += 1
 
    return powerlaw()
 
def f(x):
    return (np.linalg.norm(x) - 1) ** 2
 
def grad_f(x):
    return 2 * (np.linalg.norm(x) - 1) * x / np.linalg.norm(x)
 
initial_point = np.array([1, 0.5, -0.2])
 
optimizer = GradientDescent(maxiter=100, learning_rate=learning_rate)
x_opt, fx_opt, nfevs = optimizer.optimize(initial_point.size,
                                          f,
                                          gradient_function=grad_f,
                                          initial_point=initial_point)
 
print(f"Found minimum {x_opt} at a value of {fx_opt} using {nfevs} evaluations.")

Parameters

  • maxiter (int) – The maximum number of iterations.
  • learning_rate (Union[float, Callable[[], Iterator]]) – A constant or generator yielding learning rates for the parameter updates. See the docstring for an example.
  • tol (float) – If the norm of the parameter update is smaller than this threshold, the optimizer is converged.
  • perturbation (Optional[float]) – If no gradient is passed to GradientDescent.optimize the gradient is approximated with a symmetric finite difference scheme with perturbation perturbation in both directions (defaults to 1e-2 if required). Ignored if a gradient callable is passed to GradientDescent.optimize.

Methods

get_support_level

GradientDescent.get_support_level()

Get the support level dictionary.

gradient_num_diff

static GradientDescent.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

minimize

GradientDescent.minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

GradientDescent.print_options()

Print algorithm-specific options.

set_max_evals_grouped

GradientDescent.set_max_evals_grouped(limit)

Set max evals grouped

set_options

GradientDescent.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static GradientDescent.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.