Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

AmpCalFitter

class AmpCalFitter(backend_result, xdata, qubits, fit_p0, fit_bounds)

GitHub

Bases: qiskit.ignis.characterization.fitters.BaseGateFitter

Amplitude error fitter

See BaseFitter __init__


Methods

add_data

AmpCalFitter.add_data(results, recalc=True, refit=True)

Add new execution results to previous execution results

Parameters

  • results (Union[Result, List[Result]]) – new execution results
  • recalc (bool) – whether tp recalculate the data
  • refit (bool) – whether to refit the data

angle_err

AmpCalFitter.angle_err(qind=- 1)

Return the gate angle error

Parameters

qind (int) – qubit index to return (-1 return all)

Returns

a list of errors

Return type

list

fit_data

AmpCalFitter.fit_data(qid=- 1, p0=None, bounds=None, series=None)

Fit the curve.

Compute self._params and self._params_err

Parameters

  • qid (int) – qubit for fitting. If -1 fit for all the qubits
  • p0 (Optional[List[float]]) – initial guess, equivalent to p0 in scipy.optimize
  • bounds (Optional[Tuple[List[float], List[float]]]) – bounds, equivalent to bounds in scipy.optimize
  • series (Optional[str]) – series to fit (if None fit all)

guess_params

AmpCalFitter.guess_params(qind=0)

Guess fit parameters for the amp cal

Parameters

qind (int) – qubit index to guess fit parameters for

Returns

List of fit guess parameters [thetaerr, offset]

Return type

list

plot

AmpCalFitter.plot(qind, series='0', ax=None, show_plot=False)

Plot err data.

Parameters

  • qind (int) – qubit index to plot
  • series (str) – the series to plot
  • ax (Axes) – plot axes
  • show_plot (bool) – call plt.show()

Returns

The axes object

Return type

Axes

Raises

ImportError – if matplotlib is not installed


Attributes

backend_result

Return the execution results

Return type

Union[Result, List[Result]]

description

Return the fitter’s purpose, e.g. ‘T1’

Return type

str

fit_fun

Return the function used in the fit, e.g. BaseFitter._exp_fit_fun

Return type

Callable

measured_qubits

Return the indices of the qubits to be characterized

Return type

List[int]

params

Return the fit function parameters that were calculated by curve_fit

Return type

List[float]

params_err

Return the error of the fit function parameters

Return type

List[float]

series

Return the list of series for the data

Return type

Optional[List[str]]

xdata

Return the data points on the x-axis, the independenet parameter which is fit against

Return type

Union[List[float], array]

ydata

Return the data points on the y-axis

The data points are returning in the form of a list of dictionaries:

  • ydata[i][‘mean’] is a list, where item

    no. j is the probability of success of qubit i for a circuit that lasts xdata[j].

  • ydata[i][‘std’] is a list, where ydata[‘std’][j] is the

    standard deviation of the success of qubit i.

Return type

List[Dict]

Was this page helpful?
Report a bug or request content on GitHub.