Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

DAGDependency

class DAGDependency

GitHub

Bases: object

Object to represent a quantum circuit as a directed acyclic graph via operation dependencies (i.e. lack of commutation).

The nodes in the graph are operations represented by quantum gates. The edges correspond to non-commutation between two operations (i.e. a dependency). A directed edge from node A to node B means that operation A does not commute with operation B. The object’s methods allow circuits to be constructed.

The nodes in the graph have the following attributes: ‘operation’, ‘successors’, ‘predecessors’.

Example:

Bell circuit with no measurement.

      ┌───┐
qr_0: ┤ H ├──■──
      └───┘┌─┴─┐
qr_1: ─────┤ X ├
           └───┘

The dependency DAG for the above circuit is represented by two nodes. The first one corresponds to Hadamard gate, the second one to the CNOT gate as the gates do not commute there is an edge between the two nodes.

Reference:

[1] Iten, R., Moyard, R., Metger, T., Sutter, D. and Woerner, S., 2020. Exact and practical pattern matching for quantum circuit optimization. arXiv:1909.05270

Create an empty DAGDependency.


Methods

add_clbits

DAGDependency.add_clbits(clbits)

Add individual clbit wires.

add_creg

DAGDependency.add_creg(creg)

Add clbits in a classical register.

add_op_node

DAGDependency.add_op_node(operation, qargs, cargs)

Add a DAGDepNode to the graph and update the edges.

Parameters

  • operation (qiskit.circuit.Instruction) – operation as a quantum gate.
  • qargs (list[Qubit]) – list of qubits on which the operation acts
  • cargs (list[Clbit]) – list of classical wires to attach to.

add_qreg

DAGDependency.add_qreg(qreg)

Add qubits in a quantum register.

add_qubits

DAGDependency.add_qubits(qubits)

Add individual qubit wires.

copy

DAGDependency.copy()

Function to copy a DAGDependency object. :returns: a copy of a DAGDependency object. :rtype: DAGDependency

depth

DAGDependency.depth()

Return the circuit depth. :returns: the circuit depth :rtype: int

direct_predecessors

DAGDependency.direct_predecessors(node_id)

Direct predecessors id of a given node as sorted list.

Parameters

node_id (int) – label of considered node.

Returns

direct predecessors id as a sorted list

Return type

List

direct_successors

DAGDependency.direct_successors(node_id)

Direct successors id of a given node as sorted list.

Parameters

node_id (int) – label of considered node.

Returns

direct successors id as a sorted list

Return type

List

draw

DAGDependency.draw(scale=0.7, filename=None, style='color')

Draws the DAGDependency graph.

This function needs pydot <https://github.com/erocarrera/pydot>, which in turn needs Graphviz <https://www.graphviz.org/>` to be installed.

Parameters

  • scale (float) – scaling factor
  • filename (str) – file path to save image to (format inferred from name)
  • style (str) – ‘plain’: B&W graph ‘color’ (default): color input/output/op nodes

Returns

if in Jupyter notebook and not saving to file,

otherwise None.

Return type

Ipython.display.Image

get_all_edges

DAGDependency.get_all_edges()

Enumeration of all edges.

Returns

corresponding to the label.

Return type

List

get_edges

DAGDependency.get_edges(src_id, dest_id)

Edge enumeration between two nodes through method get_all_edge_data.

Parameters

  • src_id (int) – label of the first node.
  • dest_id (int) – label of the second node.

Returns

corresponding to all edges between the two nodes.

Return type

List

get_in_edges

DAGDependency.get_in_edges(node_id)

Enumeration of all incoming edges for a given node.

Parameters

node_id (int) – label of considered node.

Returns

corresponding incoming edges data.

Return type

List

get_node

DAGDependency.get_node(node_id)

Parameters

node_id (int) – label of considered node.

Returns

corresponding to the label.

Return type

node

get_nodes

DAGDependency.get_nodes()

Returns

iterator over all the nodes.

Return type

generator(dict)

get_out_edges

DAGDependency.get_out_edges(node_id)

Enumeration of all outgoing edges for a given node.

Parameters

node_id (int) – label of considered node.

Returns

corresponding outgoing edges data.

Return type

List

predecessors

DAGDependency.predecessors(node_id)

Predecessors id of a given node as sorted list.

Parameters

node_id (int) – label of considered node.

Returns

all predecessors id as a sorted list

Return type

List

size

DAGDependency.size()

Returns the number of gates in the circuit

successors

DAGDependency.successors(node_id)

Successors id of a given node as sorted list.

Parameters

node_id (int) – label of considered node.

Returns

all successors id as a sorted list

Return type

List

to_networkx

DAGDependency.to_networkx()

Returns a copy of the DAGDependency in networkx format.

to_retworkx

DAGDependency.to_retworkx()

Returns the DAGDependency in retworkx format.

topological_nodes

DAGDependency.topological_nodes()

Yield nodes in topological order.

Returns

node in topological order.

Return type

generator(DAGNode)


Attributes

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form

{‘gate_name’: {(qubits, params): schedule}}

global_phase

Return the global phase of the circuit.

Was this page helpful?
Report a bug or request content on GitHub.