QuadraticForm
class QuadraticForm(num_result_qubits=None, quadratic=None, linear=None, offset=None, little_endian=True)
Bases: qiskit.circuit.quantumcircuit.QuantumCircuit
Implements a quadratic form on binary variables encoded in qubit registers.
A quadratic form on binary variables is a quadratic function acting on a binary variable of bits, . For an integer matrix , an integer vector and an integer the function can be written as
If , or contain scalar values, this circuit computes only an approximation of the quadratic form.
Provided with qubits to encode the value, this circuit computes in [two’s complement](https://stackoverflow.com/questions/1049722/what-is-2s-complement) representation.
Since we use two’s complement e.g. the value of requires 2 bits to represent the value and 1 bit for the sign: 3 = ‘011’ where the first 0 indicates a positive value. On the other hand, would be -3 = ‘101’, where the first 1 indicates a negative value and 01 is the two’s complement of 3.
If the value of is too large to be represented with m qubits, the resulting bitstring is .
The implementation of this circuit is discussed in [1], Fig. 6.
References
[1]: Gilliam et al., Grover Adaptive Search for Constrained Polynomial Binary Optimization.
Parameters
- num_result_qubits (
Optional
[int
]) – The number of qubits to encode the result. Called in the class documentation. - quadratic (
Union
[ndarray
,List
[List
[Union
[float
,ParameterExpression
]]],None
]) – A matrix containing the quadratic coefficients, . - linear (
Union
[ndarray
,List
[Union
[float
,ParameterExpression
]],None
]) – An array containing the linear coefficients, . - offset (
Union
[float
,ParameterExpression
,None
]) – A constant offset, . - little_endian (
bool
) – Encode the result in little endianness.
Raises
- ValueError – If
linear
andquadratic
have mismatching sizes. - ValueError – If
num_result_qubits
is unspecified but cannot be determined because some values of the quadratic form are parameterized.
Methods Defined Here
required_result_qubits
static QuadraticForm.required_result_qubits(quadratic, linear, offset)
Get the number of required result qubits.
Parameters
- quadratic (
Union
[ndarray
,List
[List
[float
]]]) – A matrix containing the quadratic coefficients. - linear (
Union
[ndarray
,List
[float
]]) – An array containing the linear coefficients. - offset (
float
) – A constant offset.
Return type
int
Returns
The number of qubits needed to represent the value of the quadratic form in twos complement.
Attributes
ancillas
Returns a list of ancilla bits in the order that the registers were added.
Return type
List
[AncillaQubit
]
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
Return type
dict
clbits
Returns a list of classical bits in the order that the registers were added.
Return type
List
[Clbit
]
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format (instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
Return type
QuantumCircuitData
extension_lib
Default value: 'include "qelib1.inc";'
global_phase
Return the global phase of the circuit in radians.
Return type
Union
[ParameterExpression
, float
]
header
Default value: 'OPENQASM 2.0;'
instances
Default value: 9
metadata
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
Return type
dict
num_ancillas
Return the number of ancilla qubits.
Return type
int
num_clbits
Return number of classical bits.
Return type
int
num_parameters
Convenience function to get the number of parameter objects in the circuit.
Return type
int
num_qubits
Return number of qubits.
Return type
int
parameters
Convenience function to get the parameters defined in the parameter table.
Return type
ParameterView
prefix
Default value: 'circuit'
qubits
Returns a list of quantum bits in the order that the registers were added.
Return type
List
[Qubit
]