Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version.

ClassicalFunction

class ClassicalFunction(source, name=None)

GitHub

Bases: qiskit.circuit.classicalfunction.classical_element.ClassicalElement

Represent a classical function function and its logic network.

Creates a ClassicalFunction from Python source code in source.

The code should be a single function with types.

Parameters

  • source (str) – Python code with type hints.
  • name (str) – Optional. Default: “classicalfunction”. ClassicalFunction name.

Raises

QiskitError – If source is not a string.


Methods

add_decomposition

ClassicalFunction.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

ClassicalFunction.assemble()

Assemble a QasmQobjInstruction

broadcast_arguments

ClassicalFunction.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

ClassicalFunction.c_if(classical, val)

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

compile

ClassicalFunction.compile()

Parses and creates the logical circuit

control

ClassicalFunction.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters

  • num_ctrl_qubits (int) – number of controls to add to gate (default=1)
  • label (Optional[str]) – optional gate label
  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

ClassicalFunction.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

ClassicalFunction.inverse()

Invert this instruction.

If the instruction is composite (i.e. has a definition), then its definition will be recursively inverted.

Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.)

Returns

a fresh instruction for the inverse

Return type

qiskit.circuit.Instruction

Raises

CircuitError – if the instruction is not composite and an inverse has not been implemented for it.

is_parameterized

ClassicalFunction.is_parameterized()

Return True .IFF. instruction is parameterized else False

power

ClassicalFunction.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

ClassicalFunction.qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

repeat

ClassicalFunction.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops

ClassicalFunction.reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

simulate

ClassicalFunction.simulate(bitstring)

Evaluate the expression on a bitstring.

This evaluation is done classically.

Parameters

bitstring (str) – The bitstring for which to evaluate.

Returns

result of the evaluation.

Return type

bool

simulate_all

ClassicalFunction.simulate_all()

Returns a truth table.

Returns

a bitstring with a truth table

Return type

str

soft_compare

ClassicalFunction.soft_compare(other)

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters

other (instruction) – other instruction.

Returns

are self and other equal up to parameter expressions.

Return type

bool

synth

ClassicalFunction.synth(registerless=True, synthesizer=None)

Synthesis the logic network into a QuantumCircuit.

Parameters

  • registerless (bool) – Default True. If False uses the parameter names to create
  • with those names. Otherwise (registers) –
  • a circuit with a flat quantum register. (creates) –
  • synthesizer (Optional[Callable[[ClassicalElement], QuantumCircuit]]) – Optional. If None tweedledum’s pkrm_synth is used.

Returns

A circuit implementing the logic network.

Return type

QuantumCircuit

to_matrix

ClassicalFunction.to_matrix()

Return a Numpy.array for the gate unitary matrix.

Returns

if the Gate subclass has a matrix definition.

Return type

np.ndarray

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

validate_parameter

ClassicalFunction.validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression


Attributes

args

Returns the classicalfunction arguments

condition_bits

Get Clbits in condition.

Return type

List[Clbit]

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

Return type

str

name

Return the name.

network

Returns the logical network

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

return instruction params.

qregs

The list of qregs used by the classicalfunction

scopes

Returns the scope dict

truth_table

Returns (and computes) the truth table

types

Dumps a list of scopes with their variables and types.

Returns

A list of scopes as dicts, where key is the variable name and value is its type.

Return type

list(dict)

unit

Get the time unit of duration.

Was this page helpful?
Report a bug or request content on GitHub.