QNSPSA
class QNSPSA(fidelity, maxiter=100, blocking=True, allowed_increase=None, learning_rate=None, perturbation=None, last_avg=1, resamplings=1, perturbation_dims=None, regularization=None, hessian_delay=0, lse_solver=None, initial_hessian=None, callback=None, termination_checker=None)
Bases: qiskit.algorithms.optimizers.spsa.SPSA
The Quantum Natural SPSA (QN-SPSA) optimizer.
The QN-SPSA optimizer [1] is a stochastic optimizer that belongs to the family of gradient descent methods. This optimizer is based on SPSA but attempts to improve the convergence by sampling the natural gradient instead of the vanilla, first-order gradient. It achieves this by approximating Hessian of the fidelity
of the ansatz circuit.
Compared to natural gradients, which require expectation value evaluations for a circuit with parameters, QN-SPSA only requires and can therefore significantly speed up the natural gradient calculation by sacrificing some accuracy. Compared to SPSA, QN-SPSA requires 4 additional function evaluations of the fidelity.
The stochastic approximation of the natural gradient can be systematically improved by increasing the number of resamplings
. This leads to a Monte Carlo-style convergence to the exact, analytic value.
This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed
).
Examples
This short example runs QN-SPSA for the ground state calculation of the Z ^ Z
observable where the ansatz is a PauliTwoDesign
circuit.
import numpy as np
from qiskit.algorithms.optimizers import QNSPSA
from qiskit.circuit.library import PauliTwoDesign
from qiskit.opflow import Z, StateFn
ansatz = PauliTwoDesign(2, reps=1, seed=2)
observable = Z ^ Z
initial_point = np.random.random(ansatz.num_parameters)
def loss(x):
bound = ansatz.bind_parameters(x)
return np.real((StateFn(observable, is_measurement=True) @ StateFn(bound)).eval())
fidelity = QNSPSA.get_fidelity(ansatz)
qnspsa = QNSPSA(fidelity, maxiter=300)
result = qnspsa.optimize(ansatz.num_parameters, loss, initial_point=initial_point)
References
[1] J. Gacon et al, “Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information”, arXiv:2103.09232
Parameters
- fidelity (
Callable
[[ndarray
,ndarray
],float
]) – A function to compute the fidelity of the ansatz state with itself for two different sets of parameters. - maxiter (
int
) – The maximum number of iterations. Note that this is not the maximal number of function evaluations. - blocking (
bool
) – If True, only accepts updates that improve the loss (up to some allowed increase, see next argument). - allowed_increase (
Optional
[float
]) – Ifblocking
isTrue
, this argument determines by how much the loss can increase with the proposed parameters and still be accepted. IfNone
, the allowed increases is calibrated automatically to be twice the approximated standard deviation of the loss function. - learning_rate (
Union
[float
,Callable
[[],Iterator
],None
]) – The update step is the learning rate is multiplied with the gradient. If the learning rate is a float, it remains constant over the course of the optimization. It can also be a callable returning an iterator which yields the learning rates for each optimization step. Iflearning_rate
is setperturbation
must also be provided. - perturbation (
Union
[float
,Callable
[[],Iterator
],None
]) – Specifies the magnitude of the perturbation for the finite difference approximation of the gradients. Can be either a float or a generator yielding the perturbation magnitudes per step. Ifperturbation
is setlearning_rate
must also be provided. - last_avg (
int
) – Return the average of thelast_avg
parameters instead of just the last parameter values. - resamplings (
Union
[int
,Dict
[int
,int
]]) – The number of times the gradient (and Hessian) is sampled using a random direction to construct a gradient estimate. Per default the gradient is estimated using only one random direction. If an integer, all iterations use the same number of resamplings. If a dictionary, this is interpreted as{iteration: number of resamplings per iteration}
. - perturbation_dims (
Optional
[int
]) – The number of perturbed dimensions. Per default, all dimensions are perturbed, but a smaller, fixed number can be perturbed. If set, the perturbed dimensions are chosen uniformly at random. - regularization (
Optional
[float
]) – To ensure the preconditioner is symmetric and positive definite, the identity times a small coefficient is added to it. This generator yields that coefficient. - hessian_delay (
int
) – Start multiplying the gradient with the inverse Hessian only after a certain number of iterations. The Hessian is still evaluated and therefore this argument can be useful to first get a stable average over the last iterations before using it as preconditioner. - lse_solver (
Optional
[Callable
[[ndarray
,ndarray
],ndarray
]]) – The method to solve for the inverse of the Hessian. Per default an exact LSE solver is used, but can e.g. be overwritten by a minimization routine. - initial_hessian (
Optional
[ndarray
]) – The initial guess for the Hessian. By default the identity matrix is used. - callback (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],None
]]) – A callback function passed information in each iteration step. The information is, in this order: the parameters, the function value, the number of function evaluations, the stepsize, whether the step was accepted. - termination_checker (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],bool
]]) – A callback function executed at the end of each iteration step. The arguments are, in this order: the parameters, the function value, the number of function evaluations, the stepsize, whether the step was accepted. If the callback returns True, the optimization is terminated. To prevent additional evaluations of the objective method, if the objective has not yet been evaluated, the objective is estimated by taking the mean of the objective evaluations used in the estimate of the gradient.
Methods
calibrate
static QNSPSA.calibrate(loss, initial_point, c=0.2, stability_constant=0, target_magnitude=None, alpha=0.602, gamma=0.101, modelspace=False, max_evals_grouped=1)
Calibrate SPSA parameters with a powerseries as learning rate and perturbation coeffs.
The powerseries are:
Parameters
- loss (
Callable
[[ndarray
],float
]) – The loss function. - initial_point (
ndarray
) – The initial guess of the iteration. - c (
float
) – The initial perturbation magnitude. - stability_constant (
float
) – The value of A. - target_magnitude (
Optional
[float
]) – The target magnitude for the first update step, defaults to . - alpha (
float
) – The exponent of the learning rate powerseries. - gamma (
float
) – The exponent of the perturbation powerseries. - modelspace (
bool
) – Whether the target magnitude is the difference of parameter values or function values (= model space). - max_evals_grouped (
int
) – The number of grouped evaluations supported by the loss function. Defaults to 1, i.e. no grouping.
Returns
A tuple of powerseries generators, the first one for the
learning rate and the second one for the perturbation.
Return type
tuple(generator, generator)
estimate_stddev
static QNSPSA.estimate_stddev(loss, initial_point, avg=25, max_evals_grouped=1)
Estimate the standard deviation of the loss function.
Return type
float
get_fidelity
static QNSPSA.get_fidelity(circuit, backend=None, expectation=None)
Get a function to compute the fidelity of circuit
with itself.
Let circuit
be a parameterized quantum circuit performing the operation given a set of parameters . Then this method returns a function to evaluate
The output of this function can be used as input for the fidelity
to the :class:~`qiskit.algorithms.optimizers.QNSPSA` optimizer.
Parameters
- circuit (
QuantumCircuit
) – The circuit preparing the parameterized ansatz. - backend (
Union
[Backend
,QuantumInstance
,None
]) – A backend of quantum instance to evaluate the circuits. If None, plain matrix multiplication will be used. - expectation (
Optional
[ExpectationBase
]) – An expectation converter to specify how the expected value is computed. If a shot-based readout is used this should be set toPauliExpectation
.
Return type
Callable
[[ndarray
, ndarray
], float
]
Returns
A handle to the function .
get_support_level
QNSPSA.get_support_level()
Get the support level dictionary.
gradient_num_diff
static QNSPSA.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
minimize
QNSPSA.minimize(fun, x0, jac=None, bounds=None)
Minimize the scalar function.
Parameters
- fun (
Callable
[[Union
[float
,ndarray
]],float
]) – The scalar function to minimize. - x0 (
Union
[float
,ndarray
]) – The initial point for the minimization. - jac (
Optional
[Callable
[[Union
[float
,ndarray
]],Union
[float
,ndarray
]]]) – The gradient of the scalar functionfun
. - bounds (
Optional
[List
[Tuple
[float
,float
]]]) – Bounds for the variables offun
. This argument might be ignored if the optimizer does not support bounds.
Return type
OptimizerResult
Returns
The result of the optimization, containing e.g. the result as attribute x
.
optimize
QNSPSA.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
QNSPSA.print_options()
Print algorithm-specific options.
set_max_evals_grouped
QNSPSA.set_max_evals_grouped(limit)
Set max evals grouped
set_options
QNSPSA.set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
wrap_function
static QNSPSA.wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper
Attributes
bounds_support_level
Returns bounds support level
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
setting
Return setting
settings
The optimizer settings in a dictionary format.
Return type
Dict
[str
, Any
]