Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

AQGD

class AQGD(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10)

GitHub

Bases: qiskit.algorithms.optimizers.optimizer.Optimizer

Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parameterized quantum gates, i.e. Pauli Rotations. See, for example:

  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
  • Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184

for further details on analytic gradients of parameterized quantum gates.

Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.

Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.

Parameters

  • maxiter (Union[int, List[int]]) – Maximum number of iterations (full gradient steps)
  • eta (Union[float, List[float]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv
  • tol (float) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.
  • momentum (Union[float, List[float]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)
  • param_tol (float) – Tolerance for change in norm of parameters.
  • averaging (int) – Length of window over which to average objective values for objective convergence criterion

Raises

AlgorithmError – If the length of maxiter, momentum`, and eta is not the same.


Methods

get_support_level

AQGD.get_support_level()

Support level dictionary

Returns

gradient, bounds and initial point

support information that is ignored/required.

Return type

Dict[str, int]

gradient_num_diff

static AQGD.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

minimize

AQGD.minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

optimize

AQGD.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)

Perform optimization.

Parameters

  • num_vars (int) – Number of parameters to be optimized.
  • objective_function (callable) – A function that computes the objective function.
  • gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
  • variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
  • initial_point (numpy.ndarray[float]) – Initial point.

Return type

Tuple[ndarray, float, int]

Returns

point, value, nfev

point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None

Raises

ValueError – invalid input

AQGD.print_options()

Print algorithm-specific options.

set_max_evals_grouped

AQGD.set_max_evals_grouped(limit)

Set max evals grouped

set_options

AQGD.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static AQGD.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.