Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

ADAM

class ADAM(maxiter=10000, tol=1e-06, lr=0.001, beta_1=0.9, beta_2=0.99, noise_factor=1e-08, eps=1e-10, amsgrad=False, snapshot_dir=None)

GitHub

Bases: qiskit.algorithms.optimizers.optimizer.Optimizer

Adam and AMSGRAD optimizers.

Adam [1] is a gradient-based optimization algorithm that is relies on adaptive estimates of lower-order moments. The algorithm requires little memory and is invariant to diagonal rescaling of the gradients. Furthermore, it is able to cope with non-stationary objective functions and noisy and/or sparse gradients.

AMSGRAD [2] (a variant of Adam) uses a ‘long-term memory’ of past gradients and, thereby, improves convergence properties.

References

[1]: Kingma, Diederik & Ba, Jimmy (2014), Adam: A Method for Stochastic Optimization.

arXiv:1412.6980

[2]: Sashank J. Reddi and Satyen Kale and Sanjiv Kumar (2018),

On the Convergence of Adam and Beyond. arXiv:1904.09237

Note

This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed).

Parameters

  • maxiter (int) – Maximum number of iterations
  • tol (float) – Tolerance for termination
  • lr (float) – Value >= 0, Learning rate.
  • beta_1 (float) – Value in range 0 to 1, Generally close to 1.
  • beta_2 (float) – Value in range 0 to 1, Generally close to 1.
  • noise_factor (float) – Value >= 0, Noise factor
  • eps (float) – Value >=0, Epsilon to be used for finite differences if no analytic gradient method is given.
  • amsgrad (bool) – True to use AMSGRAD, False if not
  • snapshot_dir (Optional[str]) – If not None save the optimizer’s parameter after every step to the given directory

Methods

get_support_level

ADAM.get_support_level()

Return support level dictionary

gradient_num_diff

static ADAM.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

load_params

ADAM.load_params(load_dir)

Load iteration parameters for a file called adam_params.csv.

Parameters

load_dir (str) – The directory containing adam_params.csv.

Return type

None

minimize

ADAM.minimize(fun, x0, jac=None, bounds=None, objective_function=None, initial_point=None, gradient_function=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.
  • objective_function (Optional[Callable[[ndarray], float]]) – DEPRECATED. A function handle to the objective function.
  • initial_point (Optional[ndarray]) – DEPRECATED. The initial iteration point.
  • gradient_function (Optional[Callable[[ndarray], float]]) – DEPRECATED. A function handle to the gradient of the objective function.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

optimize

ADAM.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)

Perform optimization.

Parameters

  • num_vars (int) – Number of parameters to be optimized.
  • objective_function (Callable[[ndarray], float]) – Handle to a function that computes the objective function.
  • gradient_function (Optional[Callable[[ndarray], float]]) – Handle to a function that computes the gradient of the objective function.
  • variable_bounds (Optional[List[Tuple[float, float]]]) – deprecated
  • initial_point (Optional[ndarray]) – The initial point for the optimization.

Return type

Tuple[ndarray, float, int]

Returns

A tuple (point, value, nfev) where

point: is a 1D numpy.ndarray[float] containing the solution

value: is a float with the objective function value

nfev: is the number of objective function calls

ADAM.print_options()

Print algorithm-specific options.

save_params

ADAM.save_params(snapshot_dir)

Save the current iteration parameters to a file called adam_params.csv.

Note

The current parameters are appended to the file, if it exists already. The file is not overwritten.

Parameters

snapshot_dir (str) – The directory to store the file in.

Return type

None

set_max_evals_grouped

ADAM.set_max_evals_grouped(limit)

Set max evals grouped

set_options

ADAM.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static ADAM.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.