Primitives
qiskit.primitives
Overview of Estimator
Estimator class estimates expectation values of quantum circuits and observables.
An estimator object is initialized with multiple quantum circuits and observables and users can specify pairs of quantum circuits and observables to estimate the expectation values.
An estimator is initialized with the following elements.
- quantum circuits (): list of (parameterized) quantum circuits (a list of
QuantumCircuit
)) - observables (): a list of
SparsePauliOp
.
The estimator is called with the following inputs.
- circuit indexes: a list of indexes of the quantum circuits.
- observable indexes: a list of indexes of the observables.
- parameters: a list of parameters of the quantum circuits. (
ParameterView
or a list ofParameter
). - parameter values (): list of sets of values to be bound to the parameters of the quantum circuits. (list of list of float)
The output is an EstimatorResult
which contains a list of expectation values plus optional metadata like confidence intervals for the estimation.
The estimator object is expected to be close()
d after use or accessed inside “with” context and the objects are called with parameter values and run options (e.g., shots
or number of shots).
Here is an example of how estimator is used.
from qiskit.circuit.library import RealAmplitudes
from qiskit.quantum_info import SparsePauliOp
psi1 = RealAmplitudes(num_qubits=2, reps=2)
psi2 = RealAmplitudes(num_qubits=2, reps=3)
params1 = psi1.parameters
params2 = psi2.parameters
H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)])
H2 = SparsePauliOp.from_list([("IZ", 1)])
H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)])
with Estimator([psi1, psi2], [H1, H2, H3], [params1, params2]) as e:
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 1, 2, 3, 5, 8, 13]
theta3 = [1, 2, 3, 4, 5, 6]
# calculate [ <psi1(theta1)|H1|psi1(theta1)> ]
result = e([0], [0], [theta1])
print(result)
# calculate [ <psi1(theta1)|H2|psi1(theta1)>, <psi1(theta1)|H3|psi1(theta1)> ]
result2 = e([0, 0], [1, 2], [theta1]*2)
print(result2)
# calculate [ <psi2(theta2)|H2|psi2(theta2)> ]
result3 = e([1], [1], [theta2])
print(result3)
# calculate [ <psi1(theta1)|H1|psi1(theta1)>, <psi1(theta3)|H1|psi1(theta3)> ]
result4 = e([0, 0], [0, 0], [theta1, theta3])
print(result4)
# calculate [ <psi1(theta1)|H1|psi1(theta1)>,
# <psi2(theta2)|H2|psi2(theta2)>,
# <psi1(theta3)|H3|psi1(theta3)> ]
result5 = e([0, 1, 0], [0, 1, 2], [theta1, theta2, theta3])
print(result5)
Overview of Sampler
Sampler class calculates probabilities or quasi-probabilities of bitstrings from quantum circuits.
A sampler is initialized with the following elements.
- quantum circuits (): list of (parameterized) quantum circuits. (a list of
QuantumCircuit
)) - parameters: a list of parameters of the quantum circuits. (
ParameterView
or a list ofParameter
).
The sampler is run with the following inputs.
- circuit indexes: a list of indices of the circuits to evaluate.
- parameter values (): list of sets of parameter values to be bound to the parameters of the quantum circuits. (list of list of float)
The output is a SamplerResult
which contains probabilities or quasi-probabilities of bitstrings, plus optional metadata like error bars in the samples.
The sampler object is expected to be closed after use or accessed within “with” context and the objects are called with parameter values and run options (e.g., shots
or number of shots).
Here is an example of how sampler is used.
from qiskit import QuantumCircuit
from qiskit.circuit.library import RealAmplitudes
bell = QuantumCircuit(2)
bell.h(0)
bell.cx(0, 1)
bell.measure_all()
# executes a Bell circuit
with Sampler(circuits=[bell], parameters=[[]]) as sampler:
result = sampler(parameters=[[]], circuits=[0])
print([q.binary_probabilities() for q in result.quasi_dists])
# executes three Bell circuits
with Sampler([bell]*3, [[]] * 3) as sampler:
result = sampler([0, 1, 2], [[]]*3)
print([q.binary_probabilities() for q in result.quasi_dists])
# parameterized circuit
pqc = RealAmplitudes(num_qubits=2, reps=2)
pqc.measure_all()
pqc2 = RealAmplitudes(num_qubits=2, reps=3)
pqc2.measure_all()
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [1, 2, 3, 4, 5, 6]
theta3 = [0, 1, 2, 3, 4, 5, 6, 7]
with Sampler(circuits=[pqc, pqc2], parameters=[pqc.parameters, pqc2.parameters]) as sampler:
result = sampler([0, 0, 1], [theta1, theta2, theta3])
# result of pqc(theta1)
print(result.quasi_dists[0].binary_probabilities())
# result of pqc(theta2)
print(result.quasi_dists[1].binary_probabilities())
# result of pqc2(theta3)
print(result.quasi_dists[2].binary_probabilities())
Estimator
BaseEstimator (circuits, observables[, …]) | Estimator base class. |
Estimator (circuits, observables[, parameters]) | Estimator class |
Sampler
BaseSampler (circuits[, parameters]) | Sampler base class |
Sampler (circuits[, parameters]) | Sampler class |
Results
EstimatorResult (values, metadata) | Result of Estimator |
SamplerResult (quasi_dists, metadata) | Result of Sampler |