Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version

RZZGate

class RZZGate(theta, label=None)

GitHub

Bases: qiskit.circuit.gate.Gate

A parametric 2-qubit ZZZ \otimes Z interaction (rotation about ZZ).

This gate is symmetric, and is maximally entangling at θ=π/2\theta = \pi/2.

Circuit Symbol:

q_0: ───■────
zz(θ)
q_1: ───■────

Matrix Representation:

RZZ(θ)=exp(iθ2ZZ)=(eiθ20000eiθ20000eiθ20000eiθ2)\providecommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZZ}(\theta) = exp(-i \th Z{\otimes}Z) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix}\end{split}

This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:

RZZ(θ)=(RZ(θ)00RZ(θ))\begin{split}R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix}\end{split}

Examples:

RZZ(θ=0)=IR_{ZZ}(\theta = 0) = I RZZ(θ=2π)=IR_{ZZ}(\theta = 2\pi) = -I RZZ(θ=π)=ZZR_{ZZ}(\theta = \pi) = - Z \otimes Z RZZ(θ=π2)=12(1i00001+i00001+i00001i)\begin{split}R_{ZZ}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix}\end{split}

Create new RZZ gate.


Methods Defined Here

inverse

RZZGate.inverse()

Return inverse RZZ gate (i.e. with the negative rotation angle).


Attributes

condition_bits

Get Clbits in condition.

Return type

List[Clbit]

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

Return type

str

params

return instruction params.

unit

Get the time unit of duration.

Was this page helpful?
Report a bug or request content on GitHub.