qiskit.opflow.gradients.NaturalGradient
class NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)
Convert an operator expression to the first-order gradient.
Given an ill-posed inverse problem
x = arg min{||Ax-C||^2} (1)
one can use regularization schemes can be used to stabilize the system and find a numerical solution
x_lambda = arg min{||Ax-C||^2 + lambda*R(x)} (2)
where R(x) represents the penalization term.
Parameters
- grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
. - qfi_method (
Union
[str
,CircuitQFI
]) – The method used to compute the QFI. Can be either'lin_comb_full'
or'overlap_block_diag'
or'overlap_diag'
. - regularization (
Optional
[str
]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or'ridge'
or'lasso'
or'perturb_diag'
'ridge'
and'lasso'
use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization - kwargs (dict) – Optional parameters for a CircuitGradient
__init__
__init__(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)
Parameters
- grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
. - qfi_method (
Union
[str
,CircuitQFI
]) – The method used to compute the QFI. Can be either'lin_comb_full'
or'overlap_block_diag'
or'overlap_diag'
. - regularization (
Optional
[str
]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or'ridge'
or'lasso'
or'perturb_diag'
'ridge'
and'lasso'
use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularization - kwargs (dict) – Optional parameters for a CircuitGradient
Methods
__init__ ([grad_method, qfi_method, …]) | type grad_methodUnion [str , CircuitGradient ] |
convert (operator[, params]) | type operatorOperatorBase |
gradient_wrapper (operator, bind_params[, …]) | Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. |
parameter_expression_grad (param_expr, param) | Get the derivative of a parameter expression w.r.t. |
Attributes
grad_method | Returns CircuitGradient . |
qfi_method | Returns CircuitQFI . |
regularization | Returns the regularization option. |
convert
convert(operator, params=None)
Parameters
- operator (
OperatorBase
) – The operator we are taking the gradient of. - params (
Union
[ParameterVector
,ParameterExpression
,List
[ParameterExpression
],None
]) – The parameters we are taking the gradient with respect to. If not explicitly passed, they are inferred from the operator and sorted by name.
Return type
OperatorBase
Returns
An operator whose evaluation yields the NaturalGradient.
Raises
- TypeError – If
operator
does not represent an expectation value or the quantum state is notCircuitStateFn
. - ValueError – If
params
contains a parameter not present inoperator
. - ValueError – If
operator
is not parameterized.
grad_method
Returns CircuitGradient
.
Return type
CircuitGradient
Returns
CircuitGradient
.
gradient_wrapper
gradient_wrapper(operator, bind_params, grad_params=None, backend=None)
Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
Parameters
- operator (
OperatorBase
) – The operator for which we want to get the gradient, Hessian or QFI. - bind_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
]]) – The operator parameters to which the parameter values are assigned. - grad_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
],Tuple
[ParameterExpression
,ParameterExpression
],List
[Tuple
[ParameterExpression
,ParameterExpression
]],None
]) – The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad_params = None, then grad_params = bind_params - backend (
Union
[BaseBackend
,QuantumInstance
,None
]) – The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
Returns
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
Return type
callable(param_values)
parameter_expression_grad
static parameter_expression_grad(param_expr, param)
Get the derivative of a parameter expression w.r.t. the given parameter.
Parameters
- param_expr (
ParameterExpression
) – The Parameter Expression for which we compute the derivative - param (
ParameterExpression
) – Parameter w.r.t. which we want to take the derivative
Return type
Union
[ParameterExpression
, float
]
Returns
ParameterExpression representing the gradient of param_expr w.r.t. param
qfi_method
Returns CircuitQFI
.
Returns: CircuitQFI
Return type
CircuitQFI
regularization
Returns the regularization option.
Returns: the regularization option.
Return type
Optional
[str
]