qiskit.opflow.gradients.Gradient
class Gradient(grad_method='param_shift', **kwargs)
Convert an operator expression to the first-order gradient.
Parameters
- grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state/probability gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
. Ignored for gradients w.r.t observable parameters. - kwargs (dict) – Optional parameters for a CircuitGradient
Raises
ValueError – If method != fin_diff
and epsilon
is not None.
__init__
__init__(grad_method='param_shift', **kwargs)
Parameters
- grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state/probability gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
. Ignored for gradients w.r.t observable parameters. - kwargs (dict) – Optional parameters for a CircuitGradient
Raises
ValueError – If method != fin_diff
and epsilon
is not None.
Methods
__init__ ([grad_method]) | type grad_methodUnion [str , CircuitGradient ] |
convert (operator[, params]) | type operatorOperatorBase |
get_gradient (operator, params) | Get the gradient for the given operator w.r.t. |
gradient_wrapper (operator, bind_params[, …]) | Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. |
parameter_expression_grad (param_expr, param) | Get the derivative of a parameter expression w.r.t. |
Attributes
grad_method | Returns CircuitGradient . |
convert
convert(operator, params=None)
Parameters
- operator (
OperatorBase
) – The operator we are taking the gradient of. - params (
Union
[ParameterVector
,ParameterExpression
,List
[ParameterExpression
],None
]) – The parameters we are taking the gradient with respect to. If not explicitly passed, they are inferred from the operator and sorted by name.
Return type
OperatorBase
Returns
An operator whose evaluation yields the Gradient.
Raises
- ValueError – If
params
contains a parameter not present inoperator
. - ValueError – If
operator
is not parameterized.
get_gradient
get_gradient(operator, params)
Get the gradient for the given operator w.r.t. the given parameters
Parameters
- operator (
OperatorBase
) – Operator w.r.t. which we take the gradient. - params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
]]) – Parameters w.r.t. which we compute the gradient.
Return type
OperatorBase
Returns
Operator which represents the gradient w.r.t. the given params.
Raises
- ValueError – If
params
contains a parameter not present inoperator
. - OpflowError – If the coefficient of the operator could not be reduced to 1.
- OpflowError – If the differentiation of a combo_fn requires JAX but the package is not installed.
- TypeError – If the operator does not include a StateFn given by a quantum circuit
- Exception – Unintended code is reached
- MissingOptionalLibraryError – jax not installed
grad_method
Returns CircuitGradient
.
Return type
CircuitGradient
Returns
CircuitGradient
.
gradient_wrapper
gradient_wrapper(operator, bind_params, grad_params=None, backend=None)
Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
Parameters
- operator (
OperatorBase
) – The operator for which we want to get the gradient, Hessian or QFI. - bind_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
]]) – The operator parameters to which the parameter values are assigned. - grad_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
],Tuple
[ParameterExpression
,ParameterExpression
],List
[Tuple
[ParameterExpression
,ParameterExpression
]],None
]) – The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad_params = None, then grad_params = bind_params - backend (
Union
[BaseBackend
,QuantumInstance
,None
]) – The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
Returns
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
Return type
callable(param_values)
parameter_expression_grad
static parameter_expression_grad(param_expr, param)
Get the derivative of a parameter expression w.r.t. the given parameter.
Parameters
- param_expr (
ParameterExpression
) – The Parameter Expression for which we compute the derivative - param (
ParameterExpression
) – Parameter w.r.t. which we want to take the derivative
Return type
Union
[ParameterExpression
, float
]
Returns
ParameterExpression representing the gradient of param_expr w.r.t. param