qiskit.aqua.components.optimizers.AQGD
class AQGD(maxiter=1000, eta=1.0, tol=1e-06, disp=False, momentum=0.25, param_tol=1e-06, averaging=10)
Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parametrized quantum gates, i.e. Pauli Rotations. See, for example:
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
- Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184
for further details on analytic gradients of parametrized quantum gates.
Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.
Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
Parameters
- maxiter (
Union
[int
,List
[int
]]) – Maximum number of iterations (full gradient steps) - eta (
Union
[float
,List
[float
]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv - tol (
float
) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met. - disp (
bool
) – Set to True to display convergence messages. - momentum (
Union
[float
,List
[float
]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1) - param_tol (
float
) – Tolerance for change in norm of parameters. - averaging (
int
) – Length of window over which to average objective values for objective convergence criterion
Raises
AquaError – If the length of maxiter
, momentum`, and eta
is not the same.
__init__
__init__(maxiter=1000, eta=1.0, tol=1e-06, disp=False, momentum=0.25, param_tol=1e-06, averaging=10)
Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
Parameters
- maxiter (
Union
[int
,List
[int
]]) – Maximum number of iterations (full gradient steps) - eta (
Union
[float
,List
[float
]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv - tol (
float
) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met. - disp (
bool
) – Set to True to display convergence messages. - momentum (
Union
[float
,List
[float
]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1) - param_tol (
float
) – Tolerance for change in norm of parameters. - averaging (
int
) – Length of window over which to average objective values for objective convergence criterion
Raises
AquaError – If the length of maxiter
, momentum`, and eta
is not the same.
Methods
__init__ ([maxiter, eta, tol, disp, …]) | Performs Analytical Quantum Gradient Descent (AQGD) with Epochs. |
get_support_level () | Support level dictionary |
gradient_num_diff (x_center, f, epsilon[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x_center. |
optimize (num_vars, objective_function[, …]) | Perform optimization. |
print_options () | Print algorithm-specific options. |
set_max_evals_grouped (limit) | Set max evals grouped |
set_options (**kwargs) | Sets or updates values in the options dictionary. |
wrap_function (function, args) | Wrap the function to implicitly inject the args at the call of the function. |
Attributes
bounds_support_level | Returns bounds support level |
gradient_support_level | Returns gradient support level |
initial_point_support_level | Returns initial point support level |
is_bounds_ignored | Returns is bounds ignored |
is_bounds_required | Returns is bounds required |
is_bounds_supported | Returns is bounds supported |
is_gradient_ignored | Returns is gradient ignored |
is_gradient_required | Returns is gradient required |
is_gradient_supported | Returns is gradient supported |
is_initial_point_ignored | Returns is initial point ignored |
is_initial_point_required | Returns is initial point required |
is_initial_point_supported | Returns is initial point supported |
setting | Return setting |
bounds_support_level
Returns bounds support level
get_support_level
get_support_level()
Support level dictionary
Returns
gradient, bounds and initial point
support information that is ignored/required.
Return type
Dict[str, int]
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
optimize
optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Return type
Tuple
[ndarray
, float
, int
]
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
setting
Return setting
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper