qiskit.aqua.algorithms.MaximumLikelihoodAmplitudeEstimation
class MaximumLikelihoodAmplitudeEstimation(num_oracle_circuits, state_preparation=None, grover_operator=None, objective_qubits=None, post_processing=None, a_factory=None, q_factory=None, i_objective=None, likelihood_evals=None, quantum_instance=None)
The Maximum Likelihood Amplitude Estimation algorithm.
This class implements the quantum amplitude estimation (QAE) algorithm without phase estimation, as introduced in [1]. In comparison to the original QAE algorithm [2], this implementation relies solely on different powers of the Grover operator and does not require additional evaluation qubits. Finally, the estimate is determined via a maximum likelihood estimation, which is why this class in named MaximumLikelihoodAmplitudeEstimation
.
References
[1]: Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2019).
Amplitude Estimation without Phase Estimation. arXiv:1904.10246.
[2]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).
Quantum Amplitude Amplification and Estimation. arXiv:quant-ph/0005055.
Parameters
- num_oracle_circuits (
int
) – The number of circuits applying different powers of the Grover oracle Q. The (num_oracle_circuits + 1) executed circuits will be [id, Q^2^0, …, Q^2^{num_oracle_circuits-1}] A |0>, where A is the problem unitary encoded in the argument a_factory. Has a minimum value of 1. - state_preparation (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – A circuit preparing the input state, referred to as . - grover_operator (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – The Grover operator used as unitary in the phase estimation circuit. - objective_qubits (
Optional
[List
[int
]]) – A list of qubit indices. A measurement outcome is classified as ‘good’ state if all objective qubits are in state , otherwise it is classified as ‘bad’. - post_processing (
Optional
[Callable
[[float
],float
]]) – A mapping applied to the estimate of , usually used to map the estimate to a target interval. - a_factory (
Optional
[CircuitFactory
]) – The CircuitFactory subclass object representing the problem unitary. - q_factory (
Optional
[CircuitFactory
]) – The CircuitFactory subclass object representing. an amplitude estimation sample (based on a_factory) - i_objective (
Optional
[int
]) – The index of the objective qubit, i.e. the qubit marking ‘good’ solutions with the state |1> and ‘bad’ solutions with the state |0> - likelihood_evals (
Optional
[int
]) – The number of gridpoints for the maximum search of the likelihood function - quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
__init__
__init__(num_oracle_circuits, state_preparation=None, grover_operator=None, objective_qubits=None, post_processing=None, a_factory=None, q_factory=None, i_objective=None, likelihood_evals=None, quantum_instance=None)
Parameters
- num_oracle_circuits (
int
) – The number of circuits applying different powers of the Grover oracle Q. The (num_oracle_circuits + 1) executed circuits will be [id, Q^2^0, …, Q^2^{num_oracle_circuits-1}] A |0>, where A is the problem unitary encoded in the argument a_factory. Has a minimum value of 1. - state_preparation (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – A circuit preparing the input state, referred to as . - grover_operator (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – The Grover operator used as unitary in the phase estimation circuit. - objective_qubits (
Optional
[List
[int
]]) – A list of qubit indices. A measurement outcome is classified as ‘good’ state if all objective qubits are in state , otherwise it is classified as ‘bad’. - post_processing (
Optional
[Callable
[[float
],float
]]) – A mapping applied to the estimate of , usually used to map the estimate to a target interval. - a_factory (
Optional
[CircuitFactory
]) – The CircuitFactory subclass object representing the problem unitary. - q_factory (
Optional
[CircuitFactory
]) – The CircuitFactory subclass object representing. an amplitude estimation sample (based on a_factory) - i_objective (
Optional
[int
]) – The index of the objective qubit, i.e. the qubit marking ‘good’ solutions with the state |1> and ‘bad’ solutions with the state |0> - likelihood_evals (
Optional
[int
]) – The number of gridpoints for the maximum search of the likelihood function - quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
Methods
__init__ (num_oracle_circuits[, …]) | type num_oracle_circuitsint |
confidence_interval (alpha[, kind]) | Compute the alpha confidence interval using the method kind. |
construct_circuits ([measurement]) | Construct the Amplitude Estimation w/o QPE quantum circuits. |
is_good_state (measurement) | Determine whether a given state is a good state. |
post_processing (value) | Post processing of the raw amplitude estimation output . |
run ([quantum_instance]) | Execute the algorithm with selected backend. |
set_backend (backend, **kwargs) | Sets backend with configuration. |
Attributes
a_factory | Get the A operator encoding the amplitude a that’s approximated, i.e. |
backend | Returns backend. |
grover_operator | Get the operator, or Grover operator. |
i_objective | Get the index of the objective qubit. |
objective_qubits | Get the criterion for a measurement outcome to be in a ‘good’ state. |
q_factory | Get the Q operator, or Grover-operator for the Amplitude Estimation algorithm, i.e. |
quantum_instance | Returns quantum instance. |
random | Return a numpy random. |
state_preparation | Get the operator encoding the amplitude . |
a_factory
Get the A operator encoding the amplitude a that’s approximated, i.e.
A |0>_n |0> = sqrt{1 - a} |psi_0>_n |0> + sqrt{a} |psi_1>_n |1>
see the original Brassard paper (https://arxiv.org/abs/quant-ph/0005055) for more detail.
Returns
the A operator as CircuitFactory
Return type
backend
Returns backend.
Return type
Union
[Backend
, BaseBackend
]
confidence_interval
confidence_interval(alpha, kind='fisher')
Compute the alpha confidence interval using the method kind.
The confidence level is (1 - alpha) and supported kinds are ‘fisher’, ‘likelihood_ratio’ and ‘observed_fisher’ with shorthand notations ‘fi’, ‘lr’ and ‘oi’, respectively.
Parameters
- alpha (
float
) – The confidence level. - kind (
str
) – The method to compute the confidence interval. Defaults to ‘fisher’, which computes the theoretical Fisher information.
Return type
List
[float
]
Returns
The specified confidence interval.
Raises
- AquaError – If run() hasn’t been called yet.
- NotImplementedError – If the method kind is not supported.
construct_circuits
construct_circuits(measurement=False)
Construct the Amplitude Estimation w/o QPE quantum circuits.
Parameters
measurement (bool
) – Boolean flag to indicate if measurement should be included in the circuits.
Return type
List
[QuantumCircuit
]
Returns
A list with the QuantumCircuit objects for the algorithm.
grover_operator
Get the operator, or Grover operator.
If the Grover operator is not set, we try to build it from the operator and objective_qubits. This only works if objective_qubits is a list of integers.
Return type
Optional
[QuantumCircuit
]
Returns
The Grover operator, or None if neither the Grover operator nor the operator is set.
i_objective
Get the index of the objective qubit. The objective qubit marks the |psi_0> state (called ‘bad states’ in https://arxiv.org/abs/quant-ph/0005055) with |0> and |psi_1> (‘good’ states) with |1>. If the A operator performs the mapping
A |0>_n |0> = sqrt{1 - a} |psi_0>_n |0> + sqrt{a} |psi_1>_n |1>
then, the objective qubit is the last one (which is either |0> or |1>).
If the objective qubit (i_objective) is not set, we check if the Q operator (q_factory) is set and return the index specified there. If the q_factory is not defined, the index equals the number of qubits of the A operator (a_factory) minus one. If also the a_factory is not set, return None.
Returns
the index of the objective qubit
Return type
int
is_good_state
is_good_state(measurement)
Determine whether a given state is a good state.
Parameters
measurement (str
) – A measurement as bitstring, e.g. ‘01100’.
Return type
bool
Returns
True if the measurement corresponds to a good state, False otherwise.
Raises
ValueError – If self.objective_qubits
is not set.
objective_qubits
Get the criterion for a measurement outcome to be in a ‘good’ state.
Return type
Optional
[List
[int
]]
Returns
The criterion as list of qubit indices.
post_processing
post_processing(value)
Post processing of the raw amplitude estimation output .
Parameters
value (float
) – The estimation value .
Return type
float
Returns
The value after post processing, usually mapping the interval to the target interval.
q_factory
Get the Q operator, or Grover-operator for the Amplitude Estimation algorithm, i.e.
where reflects about the |0>_n state and S_psi0 reflects about . See https://arxiv.org/abs/quant-ph/0005055 for more detail.
If the Q operator is not set, we try to build it from the A operator. If neither the A operator is set, None is returned.
Returns
returns the current Q factory of the algorithm
Return type
QFactory
quantum_instance
Returns quantum instance.
Return type
Optional
[QuantumInstance
]
random
Return a numpy random.
run
run(quantum_instance=None, **kwargs)
Execute the algorithm with selected backend.
Parameters
- quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – the experimental setting. - kwargs (dict) – kwargs
Returns
results of an algorithm.
Return type
dict
Raises
AquaError – If a quantum instance or backend has not been provided
set_backend
set_backend(backend, **kwargs)
Sets backend with configuration.
Return type
None
state_preparation
Get the operator encoding the amplitude .
Return type
QuantumCircuit
Returns
The operator as QuantumCircuit.