qiskit.algorithms.optimizers.TNC
class TNC(maxiter=100, disp=False, accuracy=0, ftol=- 1, xtol=- 1, gtol=- 1, tol=None, eps=1e-08)
Truncated Newton (TNC) optimizer.
TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the CG
method as it wraps a C implementation and allows each variable to be given upper and lower bounds.
Uses scipy.optimize.minimize TNC For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
Parameters
- maxiter (
int
) – Maximum number of function evaluation. - disp (
bool
) – Set to True to print convergence messages. - accuracy (
float
) – Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. - ftol (
float
) – Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. - xtol (
float
) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. - gtol (
float
) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. - tol (
Optional
[float
]) – Tolerance for termination. - eps (
float
) – Step size used for numerical approximation of the Jacobian.
__init__
__init__(maxiter=100, disp=False, accuracy=0, ftol=- 1, xtol=- 1, gtol=- 1, tol=None, eps=1e-08)
Parameters
- maxiter (
int
) – Maximum number of function evaluation. - disp (
bool
) – Set to True to print convergence messages. - accuracy (
float
) – Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. - ftol (
float
) – Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. - xtol (
float
) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. - gtol (
float
) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. - tol (
Optional
[float
]) – Tolerance for termination. - eps (
float
) – Step size used for numerical approximation of the Jacobian.
Methods
__init__ ([maxiter, disp, accuracy, ftol, …]) | type maxiterint |
get_support_level () | return support level dictionary |
gradient_num_diff (x_center, f, epsilon[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x_center. |
optimize (num_vars, objective_function[, …]) | Perform optimization. |
print_options () | Print algorithm-specific options. |
set_max_evals_grouped (limit) | Set max evals grouped |
set_options (**kwargs) | Sets or updates values in the options dictionary. |
wrap_function (function, args) | Wrap the function to implicitly inject the args at the call of the function. |
Attributes
bounds_support_level | Returns bounds support level |
gradient_support_level | Returns gradient support level |
initial_point_support_level | Returns initial point support level |
is_bounds_ignored | Returns is bounds ignored |
is_bounds_required | Returns is bounds required |
is_bounds_supported | Returns is bounds supported |
is_gradient_ignored | Returns is gradient ignored |
is_gradient_required | Returns is gradient required |
is_gradient_supported | Returns is gradient supported |
is_initial_point_ignored | Returns is initial point ignored |
is_initial_point_required | Returns is initial point required |
is_initial_point_supported | Returns is initial point supported |
setting | Return setting |
bounds_support_level
Returns bounds support level
get_support_level
get_support_level()
return support level dictionary
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
optimize
optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
setting
Return setting
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper