qiskit.algorithms.optimizers.SPSA
class SPSA(maxiter=100, blocking=False, allowed_increase=None, trust_region=False, learning_rate=None, perturbation=None, last_avg=1, resamplings=1, perturbation_dims=None, callback=None)
Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer.
SPSA [1] is an algorithmic method for optimizing systems with multiple unknown parameters. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, and simulation optimization.
Many examples are presented at the SPSA Web site.
SPSA is a descent method capable of finding global minima, sharing this property with other methods as simulated annealing. Its main feature is the gradient approximation, which requires only two measurements of the objective function, regardless of the dimension of the optimization problem.
SPSA can be used in the presence of noise, and it is therefore indicated in situations involving measurement uncertainty on a quantum computation when finding a minimum. If you are executing a variational algorithm using a Quantum ASseMbly Language (QASM) simulator or a real device, SPSA would be the most recommended choice among the optimizers provided here.
The optimization process can includes a calibration phase if neither the learning_rate
nor perturbation
is provided, which requires additional functional evaluations. (Note that either both or none must be set.) For further details on the automatic calibration, please refer to the supplementary information section IV. of [2].
References
[1]: J. C. Spall (1998). An Overview of the Simultaneous Perturbation Method for Efficient Optimization, Johns Hopkins APL Technical Digest, 19(4), 482–492. Online.
[2]: A. Kandala et al. (2017). Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets. Nature 549, pages242–246(2017). arXiv:1704.05018v2
Parameters
- maxiter (
int
) – The maximum number of iterations. - blocking (
bool
) – If True, only accepts updates that improve the loss (minus some allowed increase, see next argument). - allowed_increase (
Optional
[float
]) – If blocking is True, this sets by how much the loss can increase and still be accepted. If None, calibrated automatically to be twice the standard deviation of the loss function. - trust_region (
bool
) – If True, restricts norm of the random direction to be . - learning_rate (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding learning rates for the parameter updates, . If set, alsoperturbation
must be provided. - perturbation (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding the perturbation magnitudes . If set, alsolearning_rate
must be provided. - last_avg (
int
) – Return the average of thelast_avg
parameters instead of just the last parameter values. - resamplings (
Union
[int
,Dict
[int
,int
]]) – The number of times the gradient is sampled using a random direction to construct a gradient estimate. Per default the gradient is estimated using only one random direction. If an integer, all iterations use the same number of resamplings. If a dictionary, this is interpreted as{iteration: number of resamplings per iteration}
. - perturbation_dims (
Optional
[int
]) – The number of perturbed dimensions. Per default, all dimensions are perturbed, but a smaller, fixed number can be perturbed. If set, the perturbed dimensions are chosen uniformly at random. - callback (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],None
]]) – A callback function passed information in each iteration step. The information is, in this order: the number of function evaluations, the parameters, the function value, the stepsize, whether the step was accepted.
__init__
__init__(maxiter=100, blocking=False, allowed_increase=None, trust_region=False, learning_rate=None, perturbation=None, last_avg=1, resamplings=1, perturbation_dims=None, callback=None)
Parameters
- maxiter (
int
) – The maximum number of iterations. - blocking (
bool
) – If True, only accepts updates that improve the loss (minus some allowed increase, see next argument). - allowed_increase (
Optional
[float
]) – If blocking is True, this sets by how much the loss can increase and still be accepted. If None, calibrated automatically to be twice the standard deviation of the loss function. - trust_region (
bool
) – If True, restricts norm of the random direction to be . - learning_rate (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding learning rates for the parameter updates, . If set, alsoperturbation
must be provided. - perturbation (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding the perturbation magnitudes . If set, alsolearning_rate
must be provided. - last_avg (
int
) – Return the average of thelast_avg
parameters instead of just the last parameter values. - resamplings (
Union
[int
,Dict
[int
,int
]]) – The number of times the gradient is sampled using a random direction to construct a gradient estimate. Per default the gradient is estimated using only one random direction. If an integer, all iterations use the same number of resamplings. If a dictionary, this is interpreted as{iteration: number of resamplings per iteration}
. - perturbation_dims (
Optional
[int
]) – The number of perturbed dimensions. Per default, all dimensions are perturbed, but a smaller, fixed number can be perturbed. If set, the perturbed dimensions are chosen uniformly at random. - callback (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],None
]]) – A callback function passed information in each iteration step. The information is, in this order: the number of function evaluations, the parameters, the function value, the stepsize, whether the step was accepted.
Methods
__init__ ([maxiter, blocking, …]) | type maxiterint |
calibrate (loss, initial_point[, c, …]) | Calibrate SPSA parameters with a powerseries as learning rate and perturbation coeffs. |
estimate_stddev (loss, initial_point[, avg]) | Estimate the standard deviation of the loss function. |
get_support_level () | Get the support level dictionary. |
gradient_num_diff (x_center, f, epsilon[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x_center. |
optimize (num_vars, objective_function[, …]) | Perform optimization. |
print_options () | Print algorithm-specific options. |
set_max_evals_grouped (limit) | Set max evals grouped |
set_options (**kwargs) | Sets or updates values in the options dictionary. |
wrap_function (function, args) | Wrap the function to implicitly inject the args at the call of the function. |
Attributes
bounds_support_level | Returns bounds support level |
gradient_support_level | Returns gradient support level |
initial_point_support_level | Returns initial point support level |
is_bounds_ignored | Returns is bounds ignored |
is_bounds_required | Returns is bounds required |
is_bounds_supported | Returns is bounds supported |
is_gradient_ignored | Returns is gradient ignored |
is_gradient_required | Returns is gradient required |
is_gradient_supported | Returns is gradient supported |
is_initial_point_ignored | Returns is initial point ignored |
is_initial_point_required | Returns is initial point required |
is_initial_point_supported | Returns is initial point supported |
setting | Return setting |
bounds_support_level
Returns bounds support level
calibrate
static calibrate(loss, initial_point, c=0.2, stability_constant=0, target_magnitude=None, alpha=0.602, gamma=0.101, modelspace=False)
Calibrate SPSA parameters with a powerseries as learning rate and perturbation coeffs.
The powerseries are:
Parameters
- loss (
Callable
[[ndarray
],float
]) – The loss function. - initial_point (
ndarray
) – The initial guess of the iteration. - c (
float
) – The initial perturbation magnitude. - stability_constant (
float
) – The value of A. - target_magnitude (
Optional
[float
]) – The target magnitude for the first update step, defaults to . - alpha (
float
) – The exponent of the learning rate powerseries. - gamma (
float
) – The exponent of the perturbation powerseries. - modelspace (
bool
) – Whether the target magnitude is the difference of parameter values or function values (= model space).
Returns
A tuple of powerseries generators, the first one for the
learning rate and the second one for the perturbation.
Return type
tuple(generator, generator)
estimate_stddev
static estimate_stddev(loss, initial_point, avg=25)
Estimate the standard deviation of the loss function.
Return type
float
get_support_level
get_support_level()
Get the support level dictionary.
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
optimize
optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
setting
Return setting
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper