qiskit.algorithms.optimizers.SLSQP
class SLSQP(maxiter=100, disp=False, ftol=1e-06, tol=None, eps=1.4901161193847656e-08)
Sequential Least SQuares Programming optimizer.
SLSQP minimizes a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft.
SLSQP is ideal for mathematical problems for which the objective function and the constraints are twice continuously differentiable. Note that the wrapper handles infinite values in bounds by converting them into large floating values.
Uses scipy.optimize.minimize SLSQP. For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
Parameters
- maxiter (
int
) – Maximum number of iterations. - disp (
bool
) – Set to True to print convergence messages. - ftol (
float
) – Precision goal for the value of f in the stopping criterion. - tol (
Optional
[float
]) – Tolerance for termination. - eps (
float
) – Step size used for numerical approximation of the Jacobian.
__init__
__init__(maxiter=100, disp=False, ftol=1e-06, tol=None, eps=1.4901161193847656e-08)
Parameters
- maxiter (
int
) – Maximum number of iterations. - disp (
bool
) – Set to True to print convergence messages. - ftol (
float
) – Precision goal for the value of f in the stopping criterion. - tol (
Optional
[float
]) – Tolerance for termination. - eps (
float
) – Step size used for numerical approximation of the Jacobian.
Methods
__init__ ([maxiter, disp, ftol, tol, eps]) | type maxiterint |
get_support_level () | Return support level dictionary |
gradient_num_diff (x_center, f, epsilon[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x_center. |
optimize (num_vars, objective_function[, …]) | Perform optimization. |
print_options () | Print algorithm-specific options. |
set_max_evals_grouped (limit) | Set max evals grouped |
set_options (**kwargs) | Sets or updates values in the options dictionary. |
wrap_function (function, args) | Wrap the function to implicitly inject the args at the call of the function. |
Attributes
bounds_support_level | Returns bounds support level |
gradient_support_level | Returns gradient support level |
initial_point_support_level | Returns initial point support level |
is_bounds_ignored | Returns is bounds ignored |
is_bounds_required | Returns is bounds required |
is_bounds_supported | Returns is bounds supported |
is_gradient_ignored | Returns is gradient ignored |
is_gradient_required | Returns is gradient required |
is_gradient_supported | Returns is gradient supported |
is_initial_point_ignored | Returns is initial point ignored |
is_initial_point_required | Returns is initial point required |
is_initial_point_supported | Returns is initial point supported |
setting | Return setting |
bounds_support_level
Returns bounds support level
get_support_level
get_support_level()
Return support level dictionary
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
optimize
optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
setting
Return setting
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper