qiskit.algorithms.optimizers.NFT
class NFT(maxiter=None, maxfev=1024, disp=False, reset_interval=32)
Nakanishi-Fujii-Todo algorithm.
See https://arxiv.org/abs/1903.12166
Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.
Parameters
- maxiter (
Optional
[int
]) – Maximum number of iterations to perform. - maxfev (
int
) – Maximum number of function evaluations to perform. - disp (
bool
) – disp - reset_interval (
int
) – The minimum estimates directly once inreset_interval
times.
Notes
In this optimization method, the optimization function have to satisfy three conditions written in K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.
__init__
__init__(maxiter=None, maxfev=1024, disp=False, reset_interval=32)
Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.
Parameters
- maxiter (
Optional
[int
]) – Maximum number of iterations to perform. - maxfev (
int
) – Maximum number of function evaluations to perform. - disp (
bool
) – disp - reset_interval (
int
) – The minimum estimates directly once inreset_interval
times.
Notes
In this optimization method, the optimization function have to satisfy three conditions written in K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.
Methods
__init__ ([maxiter, maxfev, disp, reset_interval]) | Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html. |
get_support_level () | return support level dictionary |
gradient_num_diff (x_center, f, epsilon[, …]) | We compute the gradient with the numeric differentiation in the parallel way, around the point x_center. |
optimize (num_vars, objective_function[, …]) | Perform optimization. |
print_options () | Print algorithm-specific options. |
set_max_evals_grouped (limit) | Set max evals grouped |
set_options (**kwargs) | Sets or updates values in the options dictionary. |
wrap_function (function, args) | Wrap the function to implicitly inject the args at the call of the function. |
Attributes
bounds_support_level | Returns bounds support level |
gradient_support_level | Returns gradient support level |
initial_point_support_level | Returns initial point support level |
is_bounds_ignored | Returns is bounds ignored |
is_bounds_required | Returns is bounds required |
is_bounds_supported | Returns is bounds supported |
is_gradient_ignored | Returns is gradient ignored |
is_gradient_required | Returns is gradient required |
is_gradient_supported | Returns is gradient supported |
is_initial_point_ignored | Returns is initial point ignored |
is_initial_point_required | Returns is initial point required |
is_initial_point_supported | Returns is initial point supported |
setting | Return setting |
bounds_support_level
Returns bounds support level
get_support_level
get_support_level()
return support level dictionary
gradient_num_diff
static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Parameters
- x_center (ndarray) – point around which we compute the gradient
- f (func) – the function of which the gradient is to be computed.
- epsilon (float) – the epsilon used in the numeric differentiation.
- max_evals_grouped (int) – max evals grouped
Returns
the gradient computed
Return type
grad
gradient_support_level
Returns gradient support level
initial_point_support_level
Returns initial point support level
is_bounds_ignored
Returns is bounds ignored
is_bounds_required
Returns is bounds required
is_bounds_supported
Returns is bounds supported
is_gradient_ignored
Returns is gradient ignored
is_gradient_required
Returns is gradient required
is_gradient_supported
Returns is gradient supported
is_initial_point_ignored
Returns is initial point ignored
is_initial_point_required
Returns is initial point required
is_initial_point_supported
Returns is initial point supported
optimize
optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)
Perform optimization.
Parameters
- num_vars (int) – Number of parameters to be optimized.
- objective_function (callable) – A function that computes the objective function.
- gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
- variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
- initial_point (numpy.ndarray[float]) – Initial point.
Returns
point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
Raises
ValueError – invalid input
print_options
print_options()
Print algorithm-specific options.
set_max_evals_grouped
set_max_evals_grouped(limit)
Set max evals grouped
set_options
set_options(**kwargs)
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
Parameters
kwargs (dict) – options, given as name=value.
setting
Return setting
wrap_function
static wrap_function(function, args)
Wrap the function to implicitly inject the args at the call of the function.
Parameters
- function (func) – the target function
- args (tuple) – the args to be injected
Returns
wrapper
Return type
function_wrapper