Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK. Go to the latest version.

qiskit.algorithms.optimizers.AQGD

class AQGD(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10)

GitHub

Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parameterized quantum gates, i.e. Pauli Rotations. See, for example:

  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
  • Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184

for further details on analytic gradients of parameterized quantum gates.

Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.

Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.

Parameters

  • maxiter (Union[int, List[int]]) – Maximum number of iterations (full gradient steps)
  • eta (Union[float, List[float]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv
  • tol (float) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.
  • momentum (Union[float, List[float]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)
  • param_tol (float) – Tolerance for change in norm of parameters.
  • averaging (int) – Length of window over which to average objective values for objective convergence criterion

Raises

AlgorithmError – If the length of maxiter, momentum`, and eta is not the same.

__init__

__init__(maxiter=1000, eta=1.0, tol=1e-06, momentum=0.25, param_tol=1e-06, averaging=10)

Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.

Parameters

  • maxiter (Union[int, List[int]]) – Maximum number of iterations (full gradient steps)
  • eta (Union[float, List[float]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * deriv
  • tol (float) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.
  • momentum (Union[float, List[float]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)
  • param_tol (float) – Tolerance for change in norm of parameters.
  • averaging (int) – Length of window over which to average objective values for objective convergence criterion

Raises

AlgorithmError – If the length of maxiter, momentum`, and eta is not the same.


Methods

__init__([maxiter, eta, tol, momentum, …])Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
get_support_level()Support level dictionary
gradient_num_diff(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
optimize(num_vars, objective_function[, …])Perform optimization.
print_options()Print algorithm-specific options.
set_max_evals_grouped(limit)Set max evals grouped
set_options(**kwargs)Sets or updates values in the options dictionary.
wrap_function(function, args)Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_levelReturns bounds support level
gradient_support_levelReturns gradient support level
initial_point_support_levelReturns initial point support level
is_bounds_ignoredReturns is bounds ignored
is_bounds_requiredReturns is bounds required
is_bounds_supportedReturns is bounds supported
is_gradient_ignoredReturns is gradient ignored
is_gradient_requiredReturns is gradient required
is_gradient_supportedReturns is gradient supported
is_initial_point_ignoredReturns is initial point ignored
is_initial_point_requiredReturns is initial point required
is_initial_point_supportedReturns is initial point supported
settingReturn setting

bounds_support_level

Returns bounds support level

get_support_level

get_support_level()

Support level dictionary

Returns

gradient, bounds and initial point

support information that is ignored/required.

Return type

Dict[str, int]

gradient_num_diff

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

optimize

optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)

Perform optimization.

Parameters

  • num_vars (int) – Number of parameters to be optimized.
  • objective_function (callable) – A function that computes the objective function.
  • gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
  • variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
  • initial_point (numpy.ndarray[float]) – Initial point.

Return type

Tuple[ndarray, float, int]

Returns

point, value, nfev

point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None

Raises

ValueError – invalid input

print_options()

Print algorithm-specific options.

set_max_evals_grouped

set_max_evals_grouped(limit)

Set max evals grouped

set_options

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

setting

Return setting

wrap_function

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper

Was this page helpful?
Report a bug or request content on GitHub.