qiskit.quantum_info.SuperOp
class SuperOp(data, input_dims=None, output_dims=None)
Superoperator representation of a quantum channel.
The Superoperator representation of a quantum channel is a matrix such that the evolution of a DensityMatrix
is given by
where the double-ket notation denotes a vector formed by stacking the columns of the matrix (column-vectorization).
See reference [1] for further details.
References
- C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Superoperator operator.
Parameters
- **(**QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
- input_dims (tuple) – the input subsystem dimensions. [Default: None]
- output_dims (tuple) – the output subsystem dimensions. [Default: None]
Raises
QiskitError – if input data cannot be initialized as a superoperator.
Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
__init__
__init__(data, input_dims=None, output_dims=None)
Initialize a quantum channel Superoperator operator.
Parameters
- **(**QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
- input_dims (tuple) – the input subsystem dimensions. [Default: None]
- output_dims (tuple) – the output subsystem dimensions. [Default: None]
Raises
QiskitError – if input data cannot be initialized as a superoperator.
Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
Methods
__init__ (data[, input_dims, output_dims]) | Initialize a quantum channel Superoperator operator. |
adjoint () | Return the adjoint quantum channel. |
compose (other[, qargs, front]) | Return the operator composition with another SuperOp. |
conjugate () | Return the conjugate quantum channel. |
copy () | Make a deep copy of current operator. |
dot (other[, qargs]) | Return the right multiplied operator self * other. |
expand (other) | Return the reverse-order tensor product with another SuperOp. |
input_dims ([qargs]) | Return tuple of input dimension for specified subsystems. |
is_cp ([atol, rtol]) | Test if Choi-matrix is completely-positive (CP) |
is_cptp ([atol, rtol]) | Return True if completely-positive trace-preserving (CPTP). |
is_tp ([atol, rtol]) | Test if a channel is trace-preserving (TP) |
is_unitary ([atol, rtol]) | Return True if QuantumChannel is a unitary channel. |
output_dims ([qargs]) | Return tuple of output dimension for specified subsystems. |
power (n) | Return the power of the quantum channel. |
reshape ([input_dims, output_dims, num_qubits]) | Return a shallow copy with reshaped input and output subsystem dimensions. |
tensor (other) | Return the tensor product with another SuperOp. |
to_instruction () | Convert to a Kraus or UnitaryGate circuit instruction. |
to_operator () | Try to convert channel to a unitary representation Operator. |
transpose () | Return the transpose quantum channel. |
Attributes
atol | Default absolute tolerance parameter for float comparisons. |
data | Return data. |
dim | Return tuple (input_shape, output_shape). |
num_qubits | Return the number of qubits if a N-qubit operator or None otherwise. |
qargs | Return the qargs for the operator. |
rtol | Default relative tolerance parameter for float comparisons. |
adjoint
adjoint()
Return the adjoint quantum channel.
This is equivalent to the matrix Hermitian conjugate in the SuperOp
representation ie. for a channel , the SuperOp of the adjoint channel is .
atol
Default absolute tolerance parameter for float comparisons.
compose
compose(other, qargs=None, front=False)
Return the operator composition with another SuperOp.
Parameters
- other (SuperOp) – a SuperOp object.
- qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
- front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
Returns
The composed SuperOp.
Return type
Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Composition (&
) by default is defined as left matrix multiplication for matrix operators, while dot()
is defined as right matrix multiplication. That is that A & B == A.compose(B)
is equivalent to B.dot(A)
when A
and B
are of the same type.
Setting the front=True
kwarg changes this to right matrix multiplication and is equivalent to the dot()
method A.dot(B) == A.compose(B, front=True)
.
conjugate
conjugate()
Return the conjugate quantum channel.
This is equivalent to the matrix complex conjugate in the SuperOp
representation ie. for a channel , the SuperOp of the conjugate channel is .
copy
copy()
Make a deep copy of current operator.
data
Return data.
dim
Return tuple (input_shape, output_shape).
dot
dot(other, qargs=None)
Return the right multiplied operator self * other.
Parameters
- other (Operator) – an operator object.
- qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
Returns
The right matrix multiplied Operator.
Return type
expand
expand(other)
Return the reverse-order tensor product with another SuperOp.
Parameters
other (SuperOp) – a SuperOp object.
Returns
the tensor product , where
is the current SuperOp, and is the other SuperOp.
Return type
input_dims
input_dims(qargs=None)
Return tuple of input dimension for specified subsystems.
is_cp
is_cp(atol=None, rtol=None)
Test if Choi-matrix is completely-positive (CP)
is_cptp
is_cptp(atol=None, rtol=None)
Return True if completely-positive trace-preserving (CPTP).
is_tp
is_tp(atol=None, rtol=None)
Test if a channel is trace-preserving (TP)
is_unitary
is_unitary(atol=None, rtol=None)
Return True if QuantumChannel is a unitary channel.
num_qubits
Return the number of qubits if a N-qubit operator or None otherwise.
output_dims
output_dims(qargs=None)
Return tuple of output dimension for specified subsystems.
power
power(n)
Return the power of the quantum channel.
Parameters
n (float) – the power exponent.
Returns
the channel .
Return type
Raises
QiskitError – if the input and output dimensions of the SuperOp are not equal.
For non-positive or non-integer exponents the power is defined as the matrix power of the SuperOp
representation ie. for a channel , the SuperOp of the powered channel is .
qargs
Return the qargs for the operator.
reshape
reshape(input_dims=None, output_dims=None, num_qubits=None)
Return a shallow copy with reshaped input and output subsystem dimensions.
Parameters
- input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
- output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
- num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
Returns
returns self with reshaped input and output dimensions.
Return type
BaseOperator
Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
rtol
Default relative tolerance parameter for float comparisons.
tensor
tensor(other)
Return the tensor product with another SuperOp.
Parameters
other (SuperOp) – a SuperOp object.
Returns
the tensor product , where
is the current SuperOp, and is the other SuperOp.
Return type
The tensor product can be obtained using the ^
binary operator. Hence a.tensor(b)
is equivalent to a ^ b
.
to_instruction
to_instruction()
Convert to a Kraus or UnitaryGate circuit instruction.
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
Returns
A kraus instruction for the channel.
Return type
Raises
QiskitError – if input data is not an N-qubit CPTP quantum channel.
to_operator
to_operator()
Try to convert channel to a unitary representation Operator.
transpose
transpose()
Return the transpose quantum channel.
This is equivalent to the matrix transpose in the SuperOp
representation, ie. for a channel , the SuperOp of the transpose channel is .