Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.optimization.applications.ising.tsp

Convert symmetric TSP instances into Pauli list Deal with TSPLIB format. Design the tsp object w as a two-dimensional np.array e.g., w[i, j] = x means that the length of a edge between i and j is x Note that the weights are symmetric, i.e., w[j, i] = x always holds.

Functions

calc_distance(coord[, name])calculate distance
get_operator(ins[, penalty])Generate Hamiltonian for TSP of a graph.
get_tsp_solution(x)Get graph solution from binary string.
parse_tsplib_format(filename)Read graph in TSPLIB format from file.
random_tsp(n[, low, high, savefile, seed, name])Generate a random instance for TSP.
tsp_feasible(x)Check whether a solution is feasible or not.
tsp_value(z, w)Compute the TSP value of a solution.

Classes

TspData(name, dim, coord, w)Create new instance of TspData(name, dim, coord, w)

TspData

class TspData(name, dim, coord, w)

Create new instance of TspData(name, dim, coord, w)

coord

Alias for field number 2

count

count(value, /)

Return number of occurrences of value.

dim

Alias for field number 1

index

index(value, start=0, stop=9223372036854775807, /)

Return first index of value.

Raises ValueError if the value is not present.

name

Alias for field number 0

w

Alias for field number 3

calc_distance

calc_distance(coord, name='tmp')

GitHub

calculate distance

get_operator

get_operator(ins, penalty=100000.0)

GitHub

Generate Hamiltonian for TSP of a graph.

Parameters

  • ins (TspData) – TSP data including coordinates and distances.
  • penalty (float) – Penalty coefficient for the constraints

Returns

operator for the Hamiltonian and a constant shift for the obj function.

Return type

tuple(WeightedPauliOperator, float)

get_tsp_solution

get_tsp_solution(x)

GitHub

Get graph solution from binary string.

Parameters

x (numpy.ndarray) – binary string as numpy array.

Returns

sequence of cities to traverse.

The i-th item in the list corresponds to the city which is visited in the i-th step. The list for an infeasible answer e.g. [[0,1],1,] can be interpreted as visiting [city0 and city1] as the first city, then visit city1 as the second city, then visit no where as the third city).

Return type

list[int]

logger

Default value: <Logger qiskit.optimization.applications.ising.tsp (WARNING)>

Instance data of TSP

parse_tsplib_format

parse_tsplib_format(filename)

GitHub

Read graph in TSPLIB format from file.

Parameters

filename (str) – name of the file.

Returns

instance data.

Return type

TspData

random_tsp

random_tsp(n, low=0, high=100, savefile=None, seed=None, name='tmp')

GitHub

Generate a random instance for TSP.

Parameters

  • n (int) – number of nodes.
  • low (float) – lower bound of coordinate.
  • high (float) – upper bound of coordinate.
  • savefile (str or None) – name of file where to save graph.
  • seed (int or None) – random seed - if None, will not initialize.
  • name (str) – name of an instance

Returns

instance data.

Return type

TspData

tsp_feasible

tsp_feasible(x)

GitHub

Check whether a solution is feasible or not.

Parameters

x (numpy.ndarray) – binary string as numpy array.

Returns

feasible or not.

Return type

bool

tsp_value

tsp_value(z, w)

GitHub

Compute the TSP value of a solution.

Parameters

  • z (list[int]) – list of cities.
  • w (numpy.ndarray) – adjacency matrix.

Returns

value of the cut.

Return type

float

Was this page helpful?
Report a bug or request content on GitHub.