Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.optimization.algorithms.SlsqpOptimizationResult

class SlsqpOptimizationResult(x, fval, variables, status, fx=None, its=None, imode=None, smode=None)

GitHub

SLSQP optimization result, defines additional properties that may be returned by the optimizer.

Constructs a result object with properties specific to SLSQP.

Parameters

  • x (Union[List[float], ndarray]) – The solution of the problem
  • fval (float) – The value of the objective function of the solution
  • variables (List[Variable]) – A list of variables defined in the problem
  • fx (Optional[ndarray]) – The value of the objective function being optimized, may be different from fval
  • its (Optional[int]) – The number of iterations.
  • imode (Optional[int]) – The exit mode from the optimizer (see the documentation of scipy.optimize.fmin_slsqp).
  • smode (Optional[str]) – Message describing the exit mode from the optimizer.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

__init__

__init__(x, fval, variables, status, fx=None, its=None, imode=None, smode=None)

Constructs a result object with properties specific to SLSQP.

Parameters

  • x (Union[List[float], ndarray]) – The solution of the problem
  • fval (float) – The value of the objective function of the solution
  • variables (List[Variable]) – A list of variables defined in the problem
  • fx (Optional[ndarray]) – The value of the objective function being optimized, may be different from fval
  • its (Optional[int]) – The number of iterations.
  • imode (Optional[int]) – The exit mode from the optimizer (see the documentation of scipy.optimize.fmin_slsqp).
  • smode (Optional[str]) – Message describing the exit mode from the optimizer.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

Methods

__init__(x, fval, variables, status[, fx, …])Constructs a result object with properties specific to SLSQP.

Attributes

fvalReturns the optimal function value.
fxReturns the final value of the objective function being actually optimized.
imodeReturns the exit mode from the optimizer.
itsReturns the number of iterations
raw_resultsReturn the original results object from the optimization algorithm.
smodeReturns message describing the exit mode from the optimizer.
statusReturns the termination status of the optimization algorithm.
variable_namesReturns the list of variable names of the optimization problem.
variablesReturns the list of variables of the optimization problem.
variables_dictReturns the optimal value as a dictionary of the variable name and corresponding value.
xReturns the optimal value found in the optimization or None in case of FAILURE.

fval

Returns the optimal function value.

Return type

float

Returns

The function value corresponding to the optimal value found in the optimization.

fx

Returns the final value of the objective function being actually optimized.

Return type

Optional[ndarray]

imode

Returns the exit mode from the optimizer.

Return type

Optional[int]

its

Returns the number of iterations

Return type

Optional[int]

raw_results

Return the original results object from the optimization algorithm.

Currently a dump for any leftovers.

Return type

Any

Returns

Additional result information of the optimization algorithm.

smode

Returns message describing the exit mode from the optimizer.

Return type

Optional[str]

status

Returns the termination status of the optimization algorithm.

Return type

OptimizationResultStatus

Returns

The termination status of the algorithm.

variable_names

Returns the list of variable names of the optimization problem.

Return type

List[str]

Returns

The list of variable names of the optimization problem.

variables

Returns the list of variables of the optimization problem.

Return type

List[Variable]

Returns

The list of variables.

variables_dict

Returns the optimal value as a dictionary of the variable name and corresponding value.

Return type

Dict[str, float]

Returns

The optimal value as a dictionary of the variable name and corresponding value.

x

Returns the optimal value found in the optimization or None in case of FAILURE.

Return type

Optional[ndarray]

Returns

The optimal value found in the optimization.

Was this page helpful?
Report a bug or request content on GitHub.