Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.optimization.algorithms.MinimumEigenOptimizationResult

class MinimumEigenOptimizationResult(x, fval, variables, status, samples, min_eigen_solver_result=None)

GitHub

Minimum Eigen Optimizer Result.

Parameters

  • x (Union[List[float], ndarray]) – the optimal value found by MinimumEigensolver.
  • fval (float) – the optimal function value.
  • variables (List[Variable]) – the list of variables of the optimization problem.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.
  • samples (List[Tuple[str, float, float]]) – the basis state as bitstring, the QUBO value, and the probability of sampling.
  • min_eigen_solver_result (Optional[MinimumEigensolverResult]) – the result obtained from the underlying algorithm.

__init__

__init__(x, fval, variables, status, samples, min_eigen_solver_result=None)

Parameters

  • x (Union[List[float], ndarray]) – the optimal value found by MinimumEigensolver.
  • fval (float) – the optimal function value.
  • variables (List[Variable]) – the list of variables of the optimization problem.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.
  • samples (List[Tuple[str, float, float]]) – the basis state as bitstring, the QUBO value, and the probability of sampling.
  • min_eigen_solver_result (Optional[MinimumEigensolverResult]) – the result obtained from the underlying algorithm.

Methods

__init__(x, fval, variables, status, samples)type xUnion[List[float], ndarray]
get_correlations()Get <Zi x Zj> correlation matrix from samples.

Attributes

fvalReturns the optimal function value.
min_eigen_solver_resultReturns a result object obtained from the instance of MinimumEigensolver.
raw_resultsReturn the original results object from the optimization algorithm.
samplesReturns samples.
statusReturns the termination status of the optimization algorithm.
variable_namesReturns the list of variable names of the optimization problem.
variablesReturns the list of variables of the optimization problem.
variables_dictReturns the optimal value as a dictionary of the variable name and corresponding value.
xReturns the optimal value found in the optimization or None in case of FAILURE.

fval

Returns the optimal function value.

Return type

float

Returns

The function value corresponding to the optimal value found in the optimization.

get_correlations

get_correlations()

Get <Zi x Zj> correlation matrix from samples.

Return type

ndarray

min_eigen_solver_result

Returns a result object obtained from the instance of MinimumEigensolver.

Return type

MinimumEigensolverResult

raw_results

Return the original results object from the optimization algorithm.

Currently a dump for any leftovers.

Return type

Any

Returns

Additional result information of the optimization algorithm.

samples

Returns samples.

Return type

List[Tuple[str, float, float]]

status

Returns the termination status of the optimization algorithm.

Return type

OptimizationResultStatus

Returns

The termination status of the algorithm.

variable_names

Returns the list of variable names of the optimization problem.

Return type

List[str]

Returns

The list of variable names of the optimization problem.

variables

Returns the list of variables of the optimization problem.

Return type

List[Variable]

Returns

The list of variables.

variables_dict

Returns the optimal value as a dictionary of the variable name and corresponding value.

Return type

Dict[str, float]

Returns

The optimal value as a dictionary of the variable name and corresponding value.

x

Returns the optimal value found in the optimization or None in case of FAILURE.

Return type

Optional[ndarray]

Returns

The optimal value found in the optimization.

Was this page helpful?
Report a bug or request content on GitHub.