Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.optimization.algorithms.GroverOptimizationResult

class GroverOptimizationResult(x, fval, variables, operation_counts, n_input_qubits, n_output_qubits, intermediate_fval, threshold, status)

GitHub

A result object for Grover Optimization methods.

Constructs a result object with the specific Grover properties.

Parameters

  • x (Union[List[float], ndarray]) – The solution of the problem
  • fval (float) – The value of the objective function of the solution
  • variables (List[Variable]) – A list of variables defined in the problem
  • operation_counts (Dict[int, Dict[str, int]]) – The counts of each operation performed per iteration.
  • n_input_qubits (int) – The number of qubits used to represent the input.
  • n_output_qubits (int) – The number of qubits used to represent the output.
  • intermediate_fval (float) – The intermediate value of the objective function of the solution, that is expected to be identical with fval.
  • threshold (float) – The threshold of Grover algorithm.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

__init__

__init__(x, fval, variables, operation_counts, n_input_qubits, n_output_qubits, intermediate_fval, threshold, status)

Constructs a result object with the specific Grover properties.

Parameters

  • x (Union[List[float], ndarray]) – The solution of the problem
  • fval (float) – The value of the objective function of the solution
  • variables (List[Variable]) – A list of variables defined in the problem
  • operation_counts (Dict[int, Dict[str, int]]) – The counts of each operation performed per iteration.
  • n_input_qubits (int) – The number of qubits used to represent the input.
  • n_output_qubits (int) – The number of qubits used to represent the output.
  • intermediate_fval (float) – The intermediate value of the objective function of the solution, that is expected to be identical with fval.
  • threshold (float) – The threshold of Grover algorithm.
  • status (OptimizationResultStatus) – the termination status of the optimization algorithm.

Methods

__init__(x, fval, variables, …)Constructs a result object with the specific Grover properties.

Attributes

fvalReturns the optimal function value.
intermediate_fvalGetter of the intermediate fval
n_input_qubitsGetter of n_input_qubits
n_output_qubitsGetter of n_output_qubits
operation_countsGet the operation counts.
raw_resultsReturn the original results object from the optimization algorithm.
statusReturns the termination status of the optimization algorithm.
thresholdGetter of the threshold of Grover algorithm.
variable_namesReturns the list of variable names of the optimization problem.
variablesReturns the list of variables of the optimization problem.
variables_dictReturns the optimal value as a dictionary of the variable name and corresponding value.
xReturns the optimal value found in the optimization or None in case of FAILURE.

fval

Returns the optimal function value.

Return type

float

Returns

The function value corresponding to the optimal value found in the optimization.

intermediate_fval

Getter of the intermediate fval

Return type

float

Returns

The intermediate value of fval before interpret.

n_input_qubits

Getter of n_input_qubits

Return type

int

Returns

The number of qubits used to represent the input.

n_output_qubits

Getter of n_output_qubits

Return type

int

Returns

The number of qubits used to represent the output.

operation_counts

Get the operation counts.

Return type

Dict[int, Dict[str, int]]

Returns

The counts of each operation performed per iteration.

raw_results

Return the original results object from the optimization algorithm.

Currently a dump for any leftovers.

Return type

Any

Returns

Additional result information of the optimization algorithm.

status

Returns the termination status of the optimization algorithm.

Return type

OptimizationResultStatus

Returns

The termination status of the algorithm.

threshold

Getter of the threshold of Grover algorithm.

Return type

float

Returns

The threshold of Grover algorithm.

variable_names

Returns the list of variable names of the optimization problem.

Return type

List[str]

Returns

The list of variable names of the optimization problem.

variables

Returns the list of variables of the optimization problem.

Return type

List[Variable]

Returns

The list of variables.

variables_dict

Returns the optimal value as a dictionary of the variable name and corresponding value.

Return type

Dict[str, float]

Returns

The optimal value as a dictionary of the variable name and corresponding value.

x

Returns the optimal value found in the optimization or None in case of FAILURE.

Return type

Optional[ndarray]

Returns

The optimal value found in the optimization.

Was this page helpful?
Report a bug or request content on GitHub.