qiskit.circuit.QuantumCircuit
class QuantumCircuit(*regs, name=None, global_phase=0)
Create a new circuit.
A circuit is a list of instructions bound to some registers.
Parameters
-
regs (list(
Register
) or list(int
)) –The registers to be included in the circuit.
-
If a list of
Register
objects, represents theQuantumRegister
and/orClassicalRegister
objects to include in the circuit.For example:
QuantumCircuit(QuantumRegister(4))
QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))
QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))
-
If a list of
int
, the amount of qubits and/or classical bits to include in the circuit. It can either be a single int for just the number of quantum bits, or 2 ints for the number of quantum bits and classical bits, respectively.For example:
QuantumCircuit(4) # A QuantumCircuit with 4 qubits
QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits
-
-
name (str) – the name of the quantum circuit. If not set, an automatically generated string will be assigned.
-
global_phase (float) – The global phase of the circuit in radians.
Raises
CircuitError – if the circuit name, if given, is not valid.
Examples
Construct a simple Bell state circuit.
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
qc.draw()
┌───┐ ┌─┐
q_0: ┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘
c: 2/═══════════╩══╩═
0 1
Construct a 5-qubit GHZ circuit.
from qiskit import QuantumCircuit
qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, range(1, 5))
qc.measure_all()
Construct a 4-qubit Bernstein-Vazirani circuit using registers.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(3, 'q')
anc = QuantumRegister(1, 'ancilla')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, anc, cr)
qc.x(anc[0])
qc.h(anc[0])
qc.h(qr[0:3])
qc.cx(qr[0:3], anc[0])
qc.h(qr[0:3])
qc.barrier(qr)
qc.measure(qr, cr)
qc.draw()
┌───┐ ┌───┐ ░ ┌─┐
q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────
├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐
q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───
├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐
q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├
├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘
ancilla_0: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─
└───┘└───┘└───┘└───┘└───┘ ║ ║ ║
c: 3/══════════════════════════════════╩══╩══╩═
0 1 2
__init__
__init__(*regs, name=None, global_phase=0)
Initialize self. See help(type(self)) for accurate signature.
Methods
__init__ (*regs[, name, global_phase]) | Initialize self. |
add_calibration (gate, qubits, schedule[, params]) | Register a low-level, custom pulse definition for the given gate. |
add_register (*regs) | Add registers. |
append (instruction[, qargs, cargs]) | Append one or more instructions to the end of the circuit, modifying the circuit in place. |
assign_parameters (param_dict[, inplace]) | Assign parameters to new parameters or values. |
barrier (*qargs) | Apply Barrier . |
bind_parameters (value_dict) | Assign numeric parameters to values yielding a new circuit. |
cast (value, _type) | Best effort to cast value to type. |
cbit_argument_conversion (clbit_representation) | Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits. |
ccx (control_qubit1, control_qubit2, target_qubit) | Apply CCXGate . |
ch (control_qubit, target_qubit[, label, …]) | Apply CHGate . |
cls_instances () | Return the current number of instances of this class, useful for auto naming. |
cls_prefix () | Return the prefix to use for auto naming. |
cnot (control_qubit, target_qubit[, label, …]) | Apply CXGate . |
combine (rhs) | Append rhs to self if self contains compatible registers. |
compose (other[, qubits, clbits, front, inplace]) | Compose circuit with other circuit or instruction, optionally permuting wires. |
control ([num_ctrl_qubits, label, ctrl_state]) | Control this circuit on num_ctrl_qubits qubits. |
copy ([name]) | Copy the circuit. |
count_ops () | Count each operation kind in the circuit. |
cp (theta, control_qubit, target_qubit[, …]) | Apply CPhaseGate . |
crx (theta, control_qubit, target_qubit[, …]) | Apply CRXGate . |
cry (theta, control_qubit, target_qubit[, …]) | Apply CRYGate . |
crz (theta, control_qubit, target_qubit[, …]) | Apply CRZGate . |
cswap (control_qubit, target_qubit1, …[, …]) | Apply CSwapGate . |
csx (control_qubit, target_qubit[, label, …]) | Apply CSXGate . |
cu (theta, phi, lam, gamma, control_qubit, …) | Apply CUGate . |
cu1 (theta, control_qubit, target_qubit[, …]) | Apply CU1Gate . |
cu3 (theta, phi, lam, control_qubit, target_qubit) | Apply CU3Gate . |
cx (control_qubit, target_qubit[, label, …]) | Apply CXGate . |
cy (control_qubit, target_qubit[, label, …]) | Apply CYGate . |
cz (control_qubit, target_qubit[, label, …]) | Apply CZGate . |
dcx (qubit1, qubit2) | Apply DCXGate . |
decompose () | Call a decomposition pass on this circuit, to decompose one level (shallow decompose). |
delay (duration[, qarg, unit]) | Apply Delay . |
depth () | Return circuit depth (i.e., length of critical path). |
diag_gate (diag, qubit) | Deprecated version of QuantumCircuit.diagonal. |
diagonal (diag, qubit) | Attach a diagonal gate to a circuit. |
draw ([output, scale, filename, style, …]) | Draw the quantum circuit. |
extend (rhs) | Append QuantumCircuit to the right hand side if it contains compatible registers. |
fredkin (control_qubit, target_qubit1, …) | Apply CSwapGate . |
from_qasm_file (path) | Take in a QASM file and generate a QuantumCircuit object. |
from_qasm_str (qasm_str) | Take in a QASM string and generate a QuantumCircuit object. |
h (qubit) | Apply HGate . |
hamiltonian (operator, time, qubits[, label]) | Apply hamiltonian evolution to to qubits. |
has_register (register) | Test if this circuit has the register r. |
i (qubit) | Apply IGate . |
id (qubit) | Apply IGate . |
initialize (params, qubits) | Apply initialize to circuit. |
inverse () | Invert (take adjoint of) this circuit. |
iso (isometry, q_input, q_ancillas_for_output) | Attach an arbitrary isometry from m to n qubits to a circuit. |
isometry (isometry, q_input, …[, …]) | Attach an arbitrary isometry from m to n qubits to a circuit. |
iswap (qubit1, qubit2) | Apply iSwapGate . |
mcmt (gate, control_qubits, target_qubits[, …]) | Apply a multi-control, multi-target using a generic gate. |
mcp (lam, control_qubits, target_qubit) | Apply MCPhaseGate . |
mcrx (theta, q_controls, q_target[, …]) | Apply Multiple-Controlled X rotation gate |
mcry (theta, q_controls, q_target, q_ancillae) | Apply Multiple-Controlled Y rotation gate |
mcrz (lam, q_controls, q_target[, …]) | Apply Multiple-Controlled Z rotation gate |
mct (control_qubits, target_qubit[, …]) | Apply MCXGate . |
mcu1 (lam, control_qubits, target_qubit) | Apply MCU1Gate . |
mcx (control_qubits, target_qubit[, …]) | Apply MCXGate . |
measure (qubit, cbit) | Measure quantum bit into classical bit (tuples). |
measure_active ([inplace]) | Adds measurement to all non-idle qubits. |
measure_all ([inplace]) | Adds measurement to all qubits. |
mirror () | DEPRECATED: use circuit.reverse_ops(). |
ms (theta, qubits) | Apply MSGate . |
num_connected_components ([unitary_only]) | How many non-entangled subcircuits can the circuit be factored to. |
num_nonlocal_gates () | Return number of non-local gates (i.e. |
num_tensor_factors () | Computes the number of tensor factors in the unitary (quantum) part of the circuit only. |
num_unitary_factors () | Computes the number of tensor factors in the unitary (quantum) part of the circuit only. |
p (theta, qubit) | Apply PhaseGate . |
power (power[, matrix_power]) | Raise this circuit to the power of power . |
qasm ([formatted, filename]) | Return OpenQASM string. |
qbit_argument_conversion (qubit_representation) | Converts several qubit representations (such as indexes, range, etc.) into a list of qubits. |
qubit_duration (*qubits) | Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. |
qubit_start_time (*qubits) | Return the start time of the first instruction, excluding delays, over the supplied qubits. |
qubit_stop_time (*qubits) | Return the stop time of the last instruction, excluding delays, over the supplied qubits. |
r (theta, phi, qubit) | Apply RGate . |
rcccx (control_qubit1, control_qubit2, …) | Apply RC3XGate . |
rccx (control_qubit1, control_qubit2, …) | Apply RCCXGate . |
remove_final_measurements ([inplace]) | Removes final measurement on all qubits if they are present. |
repeat (reps) | Repeat this circuit reps times. |
reset (qubit) | Reset q. |
reverse_bits () | Return a circuit with the opposite order of wires. |
reverse_ops () | Reverse the circuit by reversing the order of instructions. |
rx (theta, qubit[, label]) | Apply RXGate . |
rxx (theta, qubit1, qubit2) | Apply RXXGate . |
ry (theta, qubit[, label]) | Apply RYGate . |
ryy (theta, qubit1, qubit2) | Apply RYYGate . |
rz (phi, qubit) | Apply RZGate . |
rzx (theta, qubit1, qubit2) | Apply RZXGate . |
rzz (theta, qubit1, qubit2) | Apply RZZGate . |
s (qubit) | Apply SGate . |
sdg (qubit) | Apply SdgGate . |
size () | Returns total number of gate operations in circuit. |
snapshot (label[, snapshot_type, qubits, params]) | Take a statevector snapshot of the internal simulator representation. |
snapshot_density_matrix (label[, qubits]) | Take a density matrix snapshot of simulator state. |
snapshot_expectation_value (label, op, qubits) | Take a snapshot of expectation value <O> of an Operator. |
snapshot_probabilities (label, qubits[, variance]) | Take a probability snapshot of the simulator state. |
snapshot_stabilizer (label) | Take a stabilizer snapshot of the simulator state. |
snapshot_statevector (label) | Take a statevector snapshot of the simulator state. |
squ (unitary_matrix, qubit[, mode, …]) | Decompose an arbitrary 2*2 unitary into three rotation gates. |
swap (qubit1, qubit2) | Apply SwapGate . |
sx (qubit) | Apply SXGate . |
sxdg (qubit) | Apply SXdgGate . |
t (qubit) | Apply TGate . |
tdg (qubit) | Apply TdgGate . |
to_gate ([parameter_map, label]) | Create a Gate out of this circuit. |
to_instruction ([parameter_map]) | Create an Instruction out of this circuit. |
toffoli (control_qubit1, control_qubit2, …) | Apply CCXGate . |
u (theta, phi, lam, qubit) | Apply UGate . |
u1 (theta, qubit) | Apply U1Gate . |
u2 (phi, lam, qubit) | Apply U2Gate . |
u3 (theta, phi, lam, qubit) | Apply U3Gate . |
uc (gate_list, q_controls, q_target[, …]) | Attach a uniformly controlled gates (also called multiplexed gates) to a circuit. |
ucrx (angle_list, q_controls, q_target) | Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit. |
ucry (angle_list, q_controls, q_target) | Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit. |
ucrz (angle_list, q_controls, q_target) | Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit. |
unitary (obj, qubits[, label]) | Apply unitary gate to q. |
width () | Return number of qubits plus clbits in circuit. |
x (qubit[, label]) | Apply XGate . |
y (qubit) | Apply YGate . |
z (qubit) | Apply ZGate . |
Attributes
ancillas | Returns a list of ancilla bits in the order that the registers were added. |
calibrations | Return calibration dictionary. |
clbits | Returns a list of classical bits in the order that the registers were added. |
data | Return the circuit data (instructions and context). |
extension_lib | |
global_phase | Return the global phase of the circuit in radians. |
header | |
instances | |
num_ancillas | Return the number of ancilla qubits. |
num_clbits | Return number of classical bits. |
num_parameters | Convenience function to get the number of parameter objects in the circuit. |
num_qubits | Return number of qubits. |
parameters | Convenience function to get the parameters defined in the parameter table. |
prefix | |
qubits | Returns a list of quantum bits in the order that the registers were added. |
add_calibration
add_calibration(gate, qubits, schedule, params=None)
Register a low-level, custom pulse definition for the given gate.
Parameters
- gate (Union[Gate, str]) – Gate information.
- qubits (Union[int, Tuple[int]]) – List of qubits to be measured.
- schedule (Schedule) – Schedule information.
- params (Optional[List[Union[float, Parameter]]]) – A list of parameters.
Raises
Exception – if the gate is of type string and params is None.
add_register
add_register(*regs)
Add registers.
ancillas
Returns a list of ancilla bits in the order that the registers were added.
append
append(instruction, qargs=None, cargs=None)
Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.
Parameters
- instruction (qiskit.circuit.Instruction) – Instruction instance to append
- qargs (list(argument)) – qubits to attach instruction to
- cargs (list(argument)) – clbits to attach instruction to
Returns
a handle to the instruction that was just added
Return type
Raises
- CircuitError – if object passed is a subclass of Instruction
- CircuitError – if object passed is neither subclass nor an instance of Instruction
assign_parameters
assign_parameters(param_dict, inplace=False)
Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects. The values can be assigned to the current circuit object or to a copy of it.
Parameters
- param_dict (dict) – A dictionary specifying the mapping from
current_parameter
tonew_parameter
, wherenew_parameter
can be a new parameter object or a numeric value. - inplace (bool) – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
Raises
CircuitError – If param_dict contains parameters not present in the circuit
Returns
A copy of the circuit with bound parameters, if inplace
is True, otherwise None.
Return type
Optional(QuantumCircuit)
Examples
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> circuit = QuantumCircuit(2)
>>> params = [Parameter('A'), Parameter('B'), Parameter('C')]
>>> circuit.ry(params[0], 0)
>>> circuit.crx(params[1], 0, 1)
>>> circuit.draw()
┌───────┐
q_0: |0>┤ Ry(A) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(B) ├
└───────┘
>>> circuit.assign_parameters({params[0]: params[2]}, inplace=True)
>>> circuit.draw()
┌───────┐
q_0: |0>┤ Ry(C) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(B) ├
└───────┘
>>> bound_circuit = circuit.assign_parameters({params[1]: 1, params[2]: 2})
>>> bound_circuit.draw()
┌───────┐
q_0: |0>┤ Ry(2) ├────■────
└───────┘┌───┴───┐
q_1: |0>─────────┤ Rx(1) ├
└───────┘
>>> bound_circuit.parameters # this one has no free parameters anymore
set()
>>> circuit.parameters # the original one is still parameterized
{Parameter(A), Parameter(C)}
barrier
barrier(*qargs)
Apply Barrier
. If qargs is None, applies to all.
bind_parameters
bind_parameters(value_dict)
Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters()
method.
Parameters
value_dict (dict) – {parameter: value, …}
Raises
- CircuitError – If value_dict contains parameters not present in the circuit
- TypeError – If value_dict contains a ParameterExpression in the values.
Returns
copy of self with assignment substitution.
Return type
calibrations
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
cast
static cast(value, _type)
Best effort to cast value to type. Otherwise, returns the value.
cbit_argument_conversion
cbit_argument_conversion(clbit_representation)
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
Parameters
clbit_representation (Object) – representation to expand
Returns
Where each tuple is a classical bit.
Return type
List(tuple)
ccx
ccx(control_qubit1, control_qubit2, target_qubit)
Apply CCXGate
.
ch
ch(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CHGate
.
clbits
Returns a list of classical bits in the order that the registers were added.
cls_instances
classmethod cls_instances()
Return the current number of instances of this class, useful for auto naming.
cls_prefix
classmethod cls_prefix()
Return the prefix to use for auto naming.
cnot
cnot(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
combine
combine(rhs)
Append rhs to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Return self + rhs as a new object.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns a new QuantumCircuit object
Return type
Raises
QiskitError – if the rhs circuit is not compatible
compose
compose(other, qubits=None, clbits=None, front=False, inplace=False)
Compose circuit with other
circuit or instruction, optionally permuting wires.
other
can be narrower or of equal width to self
.
Parameters
- other (qiskit.circuit.Instruction orQuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.
- qubits (list[Qubit|int]) – qubits of self to compose onto.
- clbits (list[Clbit|int]) – clbits of self to compose onto.
- front (bool) – If True, front composition will be performed (not implemented yet).
- inplace (bool) – If True, modify the object. Otherwise return composed circuit.
Returns
the composed circuit (returns None if inplace==True).
Return type
Raises
- CircuitError – if composing on the front.
- QiskitError – if
other
is wider or there are duplicate edge mappings.
Examples
>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
control
control(num_ctrl_qubits=1, label=None, ctrl_state=None)
Control this circuit on num_ctrl_qubits
qubits.
Parameters
- num_ctrl_qubits (int) – The number of control qubits.
- label (str) – An optional label to give the controlled operation for visualization.
- ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use
2**num_ctrl_qubits - 1
.
Returns
The controlled version of this circuit.
Return type
Raises
CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.
copy
copy(name=None)
Copy the circuit.
Parameters
name (str) – name to be given to the copied circuit. If None, then the name stays the same
Returns
a deepcopy of the current circuit, with the specified name
Return type
count_ops
count_ops()
Count each operation kind in the circuit.
Returns
a breakdown of how many operations of each kind, sorted by amount.
Return type
OrderedDict
cp
cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CPhaseGate
.
crx
crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRXGate
.
cry
cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRYGate
.
crz
crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CRZGate
.
cswap
cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)
Apply CSwapGate
.
csx
csx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CSXGate
.
cu
cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CUGate
.
cu1
cu1(theta, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU1Gate
.
cu3
cu3(theta, phi, lam, control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CU3Gate
.
cx
cx(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CXGate
.
cy
cy(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CYGate
.
cz
cz(control_qubit, target_qubit, label=None, ctrl_state=None)
Apply CZGate
.
data
Return the circuit data (instructions and context).
Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format (instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.
Return type
QuantumCircuitData
dcx
dcx(qubit1, qubit2)
Apply DCXGate
.
decompose
decompose()
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
Returns
a circuit one level decomposed
Return type
delay
delay(duration, qarg=None, unit='dt')
Apply Delay
. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.
Parameters
- duration (int or float) – duration of the delay.
- qarg (Object) – qubit argument to apply this delay.
- unit (str) – unit of the duration. Supported units: ‘s’, ‘ms’, ‘us’, ‘ns’, ‘ps’, ‘dt’. Default is
dt
, i.e. integer time unit depending on the target backend.
Returns
the attached delay instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if arguments have bad format.
depth
depth()
Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as ‘barrier’ or ‘snapshot’.
Returns
Depth of circuit.
Return type
int
Notes
The circuit depth and the DAG depth need not be the same.
diag_gate
diag_gate(diag, qubit)
Deprecated version of QuantumCircuit.diagonal.
diagonal
diagonal(diag, qubit)
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in “Synthesis of Quantum Logic Circuits” by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
Parameters
- diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
- qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
Returns
the diagonal gate which was attached to the circuit.
Return type
Raises
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
draw
draw(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=True)
Draw the quantum circuit.
text: ASCII art TextDrawing that can be printed in the console.
latex: high-quality images compiled via LaTeX.
latex_source: raw uncompiled LaTeX output.
matplotlib: images with color rendered purely in Python.
Parameters
- output (str) – Select the output method to use for drawing the circuit. Valid choices are
text
,latex
,latex_source
, ormpl
. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. If the output kwarg is set, that backend will always be used over the default in a user config file. - scale (float) – scale of image to draw (shrink if < 1)
- filename (str) – file path to save image to
- style (dict or str) – dictionary of style or file name of style file. This option is only used by the
mpl
output type. If a str is passed in that is the path to a json file which contains a dictionary of style, then that will be opened, parsed, and used as the input dict. See: Style Dict Doc for more information on the contents. - interactive (bool) – when set true show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored.
- reverse_bits (bool) – When set to True, reverse the bit order inside registers for the output visualization.
- plot_barriers (bool) – Enable/disable drawing barriers in the output circuit. Defaults to True.
- justify (string) – Options are
left
,right
ornone
. If anything else is supplied it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column. - vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by thetext
output so the drawing will take less vertical room. Default ismedium
. Only used by thetext
output, will be silently ignored otherwise. - idle_wires (bool) – Include idle wires (wires with no circuit elements) in output visualization. Default is True.
- with_layout (bool) – Include layout information, with labels on the physical layout. Default is True.
- fold (int) – Sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil. get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. Inmpl
is the number of (visual) layers before folding. Default is 25. - ax (matplotlib.axes.Axes) – An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified, there will be no returned Figure since it is redundant. This is only used when the
output
kwarg is set to use thempl
backend. It will be silently ignored with all other outputs. - initial_state (bool) – Optional. Adds
|0>
in the beginning of the wire. Only used by thetext
,latex
andlatex_source
outputs. Default:False
. - cregbundle (bool) – Optional. If set True bundle classical registers. Not used by the
matplotlib
output. Default:True
.
Returns
PIL.Image
or matplotlib.figure
or str
or TextDrawing
:
-
PIL.Image (output=’latex’)
an in-memory representation of the image of the circuit diagram.
-
matplotlib.figure.Figure (output=’mpl’)
a matplotlib figure object for the circuit diagram.
-
str (output=’latex_source’)
The LaTeX source code for visualizing the circuit diagram.
-
TextDrawing (output=’text’)
A drawing that can be printed as ASCII art.
Raises
- VisualizationError – when an invalid output method is selected
- ImportError – when the output methods require non-installed libraries
Style Dict Details
The style dict kwarg contains numerous options that define the style of the output circuit visualization. The style dict is only used by the mpl
output. The options available in the style dict are defined below:
Parameters
-
name (str) – The name of the style. The name can be set to ‘iqx’, ‘bw’, or ‘default’. This overrides the setting in the ‘~/.qiskit/settings.conf’ file.
-
textcolor (str) – The color code to use for text. Defaults to ‘#000000’
-
subtextcolor (str) – The color code to use for subtext. Defaults to ‘#000000’
-
linecolor (str) – The color code to use for lines. Defaults to ‘#000000’
-
creglinecolor (str) – The color code to use for classical register lines. Defaults to ‘#778899’
-
gatetextcolor (str) – The color code to use for gate text. Defaults to ‘#000000’
-
gatefacecolor (str) – The color code to use for gates. Defaults to ‘#ffffff’
-
barrierfacecolor (str) – The color code to use for barriers. Defaults to ‘#bdbdbd’
-
backgroundcolor (str) – The color code to use for the background. Defaults to ‘#ffffff’
-
fontsize (int) – The font size to use for text. Defaults to 13.
-
subfontsize (int) – The font size to use for subtext. Defaults to 8.
-
displaytext (dict) –
A dictionary of the text to use for each element type in the output visualization. The default values are:
{ 'id': 'id', 'u0': 'U_0', 'u1': 'U_1', 'u2': 'U_2', 'u3': 'U_3', 'x': 'X', 'y': 'Y', 'z': 'Z', 'h': 'H', 's': 'S', 'sdg': 'S^\dagger', 't': 'T', 'tdg': 'T^\dagger', 'rx': 'R_x', 'ry': 'R_y', 'rz': 'R_z', 'reset': '\left|0\right\rangle' }
You must specify all the necessary values if using this. There is no provision for passing an incomplete dict in.
-
displaycolor (dict) –
The color codes to use for each circuit element in the form (gate_color, text_color). The default values are:
{ 'u1': ('#FA74A6', '#000000'), 'u2': ('#FA74A6', '#000000'), 'u3': ('#FA74A6', '#000000'), 'id': ('#05BAB6', '#000000'), 'x': ('#05BAB6', '#000000'), 'y': ('#05BAB6', '#000000'), 'z': ('#05BAB6', '#000000'), 'h': ('#6FA4FF', '#000000'), 'cx': ('#6FA4FF', '#000000'), 'cy': ('#6FA4FF', '#000000'), 'cz': ('#6FA4FF', '#000000'), 'swap': ('#6FA4FF', '#000000'), 's': ('#6FA4FF', '#000000'), 'sdg': ('#6FA4FF', '#000000'), 'dcx': ('#6FA4FF', '#000000'), 'iswap': ('#6FA4FF', '#000000'), 't': ('#BB8BFF', '#000000'), 'tdg': ('#BB8BFF', '#000000'), 'r': ('#BB8BFF', '#000000'), 'rx': ('#BB8BFF', '#000000'), 'ry': ('#BB8BFF', '#000000'), 'rz': ('#BB8BFF', '#000000'), 'rxx': ('#BB8BFF', '#000000'), 'ryy': ('#BB8BFF', '#000000'), 'rzx': ('#BB8BFF', '#000000'), 'reset': ('#000000', #FFFFFF'), 'target': ('#FFFFFF, '#FFFFFF'), 'measure': ('#000000', '#FFFFFF'), 'ccx': ('#BB8BFF', '#000000'), 'cdcx': ('#BB8BFF', '#000000'), 'ccdcx': ('#BB8BFF', '#000000'), 'cswap': ('#BB8BFF', '#000000'), 'ccswap': ('#BB8BFF', '#000000'), 'mcx': ('#BB8BFF', '#000000'), 'mcx_gray': ('#BB8BFF', '#000000), 'u': ('#BB8BFF', '#000000'), 'p': ('#BB8BFF', '#000000'), 'sx': ('#BB8BFF', '#000000'), 'sxdg': ('#BB8BFF', '#000000') }
Colors can also be entered without the text color, such as ‘u1’: ‘#FA74A6’, in which case the text color will always be ‘gatetextcolor’. The ‘displaycolor’ dict can contain any number of elements from one to the entire dict above.
-
latexdrawerstyle (bool) – When set to True, enable LaTeX mode, which will draw gates like the latex output modes.
-
usepiformat (bool) – When set to True, use radians for output.
-
fold (int) – The number of circuit elements to fold the circuit at. Defaults to 20.
-
cregbundle (bool) – If set True, bundle classical registers
-
showindex (bool) – If set True, draw an index.
-
compress (bool) – If set True, draw a compressed circuit.
-
figwidth (int) – The maximum width (in inches) for the output figure.
-
dpi (int) – The DPI to use for the output image. Defaults to 150.
-
margin (list) – A list of margin values to adjust spacing around output image. Takes a list of 4 ints: [x left, x right, y bottom, y top].
-
creglinestyle (str) – The style of line to use for classical registers. Choices are ‘solid’, ‘doublet’, or any valid matplotlib linestyle kwarg value. Defaults to doublet
extend
extend(rhs)
Append QuantumCircuit to the right hand side if it contains compatible registers.
Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.
Modify and return self.
Parameters
rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.
Returns
Returns this QuantumCircuit object (which has been modified)
Return type
Raises
QiskitError – if the rhs circuit is not compatible
fredkin
fredkin(control_qubit, target_qubit1, target_qubit2)
Apply CSwapGate
.
from_qasm_file
static from_qasm_file(path)
Take in a QASM file and generate a QuantumCircuit object.
Parameters
path (str) – Path to the file for a QASM program
Returns
The QuantumCircuit object for the input QASM
Return type
from_qasm_str
static from_qasm_str(qasm_str)
Take in a QASM string and generate a QuantumCircuit object.
Parameters
qasm_str (str) – A QASM program string
Returns
The QuantumCircuit object for the input QASM
Return type
global_phase
Return the global phase of the circuit in radians.
h
h(qubit)
Apply HGate
.
hamiltonian
hamiltonian(operator, time, qubits, label=None)
Apply hamiltonian evolution to to qubits.
has_register
has_register(register)
Test if this circuit has the register r.
Parameters
register (Register) – a quantum or classical register.
Returns
True if the register is contained in this circuit.
Return type
bool
i
i(qubit)
Apply IGate
.
id
id(qubit)
Apply IGate
.
initialize
initialize(params, qubits)
Apply initialize to circuit.
inverse
inverse()
Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
Returns
the inverted circuit
Return type
Raises
CircuitError – if the circuit cannot be inverted.
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
└───────────┘
iso
iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
isometry
isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
Parameters
- isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
- q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
- q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
- q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
- q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
Returns
the isometry is attached to the quantum circuit.
Return type
Raises
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
iswap
iswap(qubit1, qubit2)
Apply iSwapGate
.
mcmt
mcmt(gate, control_qubits, target_qubits, ancilla_qubits=None, mode='noancilla', *, single_control_gate_fun=None, q_controls=None, q_ancillae=None, q_targets=None)
Apply a multi-control, multi-target using a generic gate.
This can also be used to implement a generic multi-control gate, as the target could also be of length 1.
mcp
mcp(lam, control_qubits, target_qubit)
Apply MCPhaseGate
.
mcrx
mcrx(theta, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled X rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcry
mcry(theta, q_controls, q_target, q_ancillae, mode=None, use_basis_gates=False)
Apply Multiple-Controlled Y rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
- theta (float) – angle theta
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
- mode (string) – The implementation mode to use
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mcrz
mcrz(lam, q_controls, q_target, use_basis_gates=False)
Apply Multiple-Controlled Z rotation gate
Parameters
- self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.
- lam (float) – angle lambda
- q_controls (list(Qubit)) – The list of control qubits
- q_target (Qubit) – The target qubit
- use_basis_gates (bool) – use p, u, cx
Raises
QiskitError – parameter errors
mct
mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
mcu1
mcu1(lam, control_qubits, target_qubit)
Apply MCU1Gate
.
mcx
mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')
Apply MCXGate
.
The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - ‘no-ancilla’: Requires 0 ancilla qubits. - ‘recursion’: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - ‘v-chain’: Requires 2 less ancillas than the number of control qubits. - ‘v-chain-dirty’: Same as for the clean ancillas (but the circuit will be longer).
measure
measure(qubit, cbit)
Measure quantum bit into classical bit (tuples).
Parameters
- qubit (QuantumRegister|list|tuple) – quantum register
- cbit (ClassicalRegister|list|tuple) – classical register
Returns
the attached measure instruction.
Return type
qiskit.Instruction
Raises
CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.
measure_active
measure_active(inplace=True)
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
measure_all
measure_all(inplace=True)
Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.
Returns a new circuit with measurements if inplace=False.
Parameters
inplace (bool) – All measurements inplace or return new circuit.
Returns
Returns circuit with measurements when inplace = False.
Return type
mirror
ms
ms(theta, qubits)
Apply MSGate
.
num_ancillas
Return the number of ancilla qubits.
num_clbits
Return number of classical bits.
num_connected_components
num_connected_components(unitary_only=False)
How many non-entangled subcircuits can the circuit be factored to.
Parameters
unitary_only (bool) – Compute only unitary part of graph.
Returns
Number of connected components in circuit.
Return type
int
num_nonlocal_gates
num_nonlocal_gates()
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
num_parameters
Convenience function to get the number of parameter objects in the circuit.
num_qubits
Return number of qubits.
num_tensor_factors
num_tensor_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
num_unitary_factors
num_unitary_factors()
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
p
p(theta, qubit)
Apply PhaseGate
.
parameters
Convenience function to get the parameters defined in the parameter table.
power
power(power, matrix_power=False)
Raise this circuit to the power of power
.
If power
is a positive integer and matrix_power
is False
, this implementation defaults to calling repeat
. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.
Parameters
- power (int) – The power to raise this circuit to.
- matrix_power (bool) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, and
power
is a positive integer, the implementation defaults torepeat
.
Raises
CircuitError – If the circuit needs to be converted to a gate but it is not unitary.
Returns
A circuit implementing this circuit raised to the power of power
.
Return type
qasm
qasm(formatted=False, filename=None)
Return OpenQASM string.
Parameters
- formatted (bool) – Return formatted Qasm string.
- filename (str) – Save Qasm to file with name ‘filename’.
Returns
If formatted=False.
Return type
str
Raises
ImportError – If pygments is not installed and formatted
is True
.
qbit_argument_conversion
qbit_argument_conversion(qubit_representation)
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
Parameters
qubit_representation (Object) – representation to expand
Returns
Where each tuple is a qubit.
Return type
List(tuple)
qubit_duration
qubit_duration(*qubits)
Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Parameters
*qubits – Qubits within self
to include.
Return type
Union
[int
, float
]
Returns
Return the duration between the first start and last stop time of non-delay instructions
qubit_start_time
qubit_start_time(*qubits)
Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
Union
[int
, float
]
Returns
Return the start time of the first instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
qubit_stop_time
qubit_stop_time(*qubits)
Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is self.unit
.
Return 0 if there are no instructions over qubits
Parameters
- *qubits – Qubits within
self
to include. Integers are allowed for qubits, indicating - of self.qubits. (indices) –
Return type
Union
[int
, float
]
Returns
Return the stop time of the last instruction, excluding delays, over the qubits
Raises
CircuitError – if self
is a not-yet scheduled circuit.
qubits
Returns a list of quantum bits in the order that the registers were added.
r
r(theta, phi, qubit)
Apply RGate
.
rcccx
rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)
Apply RC3XGate
.
rccx
rccx(control_qubit1, control_qubit2, target_qubit)
Apply RCCXGate
.
remove_final_measurements
remove_final_measurements(inplace=True)
Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.
Returns a new circuit without measurements if inplace=False.
Parameters
inplace (bool) – All measurements removed inplace or return new circuit.
Returns
Returns circuit with measurements removed when inplace = False.
Return type
repeat
repeat(reps)
Repeat this circuit reps
times.
Parameters
reps (int) – How often this circuit should be repeated.
Returns
A circuit containing reps
repetitions of this circuit.
Return type
reset
reset(qubit)
Reset q.
reverse_bits
reverse_bits()
Return a circuit with the opposite order of wires.
The circuit is “vertically” flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.
Returns
the circuit with reversed bit order.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌──────────┐
q_0: ─────┤ RX(1.57) ├
┌───┐└────┬─────┘
q_1: ┤ H ├─────■──────
└───┘
reverse_ops
reverse_ops()
Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.
Returns
the reversed circuit.
Return type
Examples
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
└──────────┘
rx
rx(theta, qubit, label=None)
Apply RXGate
.
rxx
rxx(theta, qubit1, qubit2)
Apply RXXGate
.
ry
ry(theta, qubit, label=None)
Apply RYGate
.
ryy
ryy(theta, qubit1, qubit2)
Apply RYYGate
.
rz
rz(phi, qubit)
Apply RZGate
.
rzx
rzx(theta, qubit1, qubit2)
Apply RZXGate
.
rzz
rzz(theta, qubit1, qubit2)
Apply RZZGate
.
s
s(qubit)
Apply SGate
.
sdg
sdg(qubit)
Apply SdgGate
.
size
size()
Returns total number of gate operations in circuit.
Returns
Total number of gate operations.
Return type
int
snapshot
snapshot(label, snapshot_type='statevector', qubits=None, params=None)
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None
Returns
with attached command
Return type
Raises
ExtensionError – malformed command
snapshot_density_matrix
snapshot_density_matrix(label, qubits=None)
Take a density matrix snapshot of simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_expectation_value
snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)
Take a snapshot of expectation value <O> of an Operator.
Parameters
- label (str) – a snapshot label to report the result
- op (Operator) – operator to snapshot
- qubits (list) – the qubits to snapshot.
- single_shot (bool) – return list for each shot rather than average [Default: False]
- variance (bool) – compute variance of values [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_probabilities
snapshot_probabilities(label, qubits, variance=False)
Take a probability snapshot of the simulator state.
Parameters
- label (str) – a snapshot label to report the result
- qubits (list) – the qubits to snapshot.
- variance (bool) – compute variance of probabilities [Default: False]
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
snapshot_stabilizer
snapshot_stabilizer(label)
Take a stabilizer snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
snapshot_statevector
snapshot_statevector(label)
Take a statevector snapshot of the simulator state.
Parameters
label (str) – a snapshot label to report the result.
Returns
with attached instruction.
Return type
Raises
ExtensionError – if snapshot is invalid.
Additional Information:
This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.
squ
squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book “Quantum computation and quantum information”.)
Parameters
- unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
- qubit (QuantumRegister | Qubit) – The qubit which the gate is acting on.
- mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: “ZYZ” (default)
- up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u’ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u’)
- u (ndarray) – Deprecated, use
unitary_matrix
instead.
Returns
The single-qubit unitary instruction attached to the circuit.
Return type
Raises
QiskitError – if the format is wrong; if the array u is not unitary
swap
swap(qubit1, qubit2)
Apply SwapGate
.
sx
sx(qubit)
Apply SXGate
.
sxdg
sxdg(qubit)
Apply SXdgGate
.
t
t(qubit)
Apply TGate
.
tdg
tdg(qubit)
Apply TdgGate
.
to_gate
to_gate(parameter_map=None, label=None)
Create a Gate out of this circuit.
Parameters
- parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.
- label (str) – Optional gate label.
Returns
a composite gate encapsulating this circuit (can be decomposed back)
Return type
to_instruction
to_instruction(parameter_map=None)
Create an Instruction out of this circuit.
Parameters
parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.
Returns
a composite instruction encapsulating this circuit (can be decomposed back)
Return type
toffoli
toffoli(control_qubit1, control_qubit2, target_qubit)
Apply CCXGate
.
u
u(theta, phi, lam, qubit)
Apply UGate
.
u1
u1(theta, qubit)
Apply U1Gate
.
u2
u2(phi, lam, qubit)
Apply U2Gate
.
u3
u3(theta, phi, lam, qubit)
Apply U3Gate
.
uc
uc(gate_list, q_controls, q_target, up_to_diagonal=False)
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
Parameters
- gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
- q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
- q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
- up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u’ is implemented such that there exists a diagonal gate d with u = d.dot(u’), where the unitary u describes the uniformly controlled gate
Returns
the uniformly controlled gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrx
ucrx(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list) – list of (real) rotation angles
- q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucry
ucry(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so on - q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
ucrz
ucrz(angle_list, q_controls, q_target)
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
Parameters
- angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]
- q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on
- q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates
Returns
the uniformly controlled rotation gate is attached to the circuit.
Return type
Raises
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
unitary
unitary(obj, qubits, label=None)
Apply unitary gate to q.
width
width()
Return number of qubits plus clbits in circuit.
Returns
Width of circuit.
Return type
int
x
x(qubit, label=None)
Apply XGate
.
y
y(qubit)
Apply YGate
.
z
z(qubit)
Apply ZGate
.