Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.
Important

IBM Quantum Platform is moving and this version will be sunset on July 1. To get started on the new platform, read the migration guide.

qiskit.chemistry.algorithms.pes_samplers.EnergySurface1DSpline

class EnergySurface1DSpline

GitHub

A simple cubic spline interpolation for the potential energy surface.

A spline interpolation method for data fitting.

This allows for fitting BOPES sampler results or potential energy surfaces.

__init__

__init__()

A spline interpolation method for data fitting.

This allows for fitting BOPES sampler results or potential energy surfaces.


Methods

__init__()A spline interpolation method for data fitting.
eval(x)After fitting the data to the fit function, predict the energy at a point x.
fit(xdata, ydata[, initial_vals, bounds_list])Fits surface to data.
get_equilibrium_geometry([scaling])Returns the geometry for the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are Angstroms.
get_minimal_energy([scaling])Returns the value of the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are J/mol.
get_trust_region()Get the trust region.

eval

eval(x)

After fitting the data to the fit function, predict the energy at a point x.

Parameters

x (float) – Value to be evaluated

Return type

float

Returns

Value of surface fit in point x.

fit

fit(xdata, ydata, initial_vals=None, bounds_list=None)

Fits surface to data.

Parameters

  • xdata (List[float]) – x data to be fitted
  • ydata (List[float]) – y data to be fitted
  • initial_vals (Optional[List[float]]) – Initial values for fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)
  • bounds_list (Optional[Tuple[List[float], List[float]]]) – Bounds for the fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)

Return type

None

get_equilibrium_geometry

get_equilibrium_geometry(scaling=1.0)

Returns the geometry for the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are Angstroms. Scale by 1E-10 to get meters. :type scaling: float :param scaling: scaling factor

Return type

float

Returns

equilibrium geometry

get_minimal_energy

get_minimal_energy(scaling=1.0)

Returns the value of the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are J/mol. Scale appropriately for Hartrees. :type scaling: float :param scaling: scaling factor

Return type

float

Returns

minimum energy

get_trust_region

get_trust_region()

Get the trust region.

Returns the bounds of the region (in space) where the energy surface implementation can be trusted. When doing spline interpolation, for example, that would be the region where data is interpolated (vs. extrapolated) from the arguments of fit().

Return type

Tuple[float, float]

Returns

The trust region between bounds.

Was this page helpful?
Report a bug or request content on GitHub.