qiskit.chemistry.algorithms.VQEAdapt
class VQEAdapt(operator, var_form_base, optimizer, initial_point=None, excitation_pool=None, threshold=1e-05, delta=1, max_iterations=None, max_evals_grouped=1, aux_operators=None, quantum_instance=None)
DEPRECATED. The Adaptive VQE algorithm.
See https://arxiv.org/abs/1812.11173
Parameters
- operator (
LegacyBaseOperator
) – Qubit operator - var_form_base (
VariationalForm
) – base parameterized variational form - optimizer (
Optimizer
) – the classical optimizer algorithm - initial_point (
Optional
[ndarray
]) – optimizer initial point - excitation_pool (
Optional
[List
[WeightedPauliOperator
]]) – list of excitation operators - threshold (
float
) – absolute threshold value for gradients, has a min. value of 1e-15. - delta (
float
) – finite difference step size for gradient computation, has a min. value of 1e-5. - max_iterations (
Optional
[int
]) – maximum number of macro iterations of the VQEAdapt algorithm. - max_evals_grouped (
int
) – max number of evaluations performed simultaneously - aux_operators (
Optional
[List
[LegacyBaseOperator
]]) – Auxiliary operators to be evaluated at each eigenvalue - quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
Raises
- ValueError – if var_form_base is not an instance of UCCSD.
- See also – qiskit/chemistry/components/variational_forms/uccsd_adapt.py
__init__
__init__(operator, var_form_base, optimizer, initial_point=None, excitation_pool=None, threshold=1e-05, delta=1, max_iterations=None, max_evals_grouped=1, aux_operators=None, quantum_instance=None)
Parameters
- operator (
LegacyBaseOperator
) – Qubit operator - var_form_base (
VariationalForm
) – base parameterized variational form - optimizer (
Optimizer
) – the classical optimizer algorithm - initial_point (
Optional
[ndarray
]) – optimizer initial point - excitation_pool (
Optional
[List
[WeightedPauliOperator
]]) – list of excitation operators - threshold (
float
) – absolute threshold value for gradients, has a min. value of 1e-15. - delta (
float
) – finite difference step size for gradient computation, has a min. value of 1e-5. - max_iterations (
Optional
[int
]) – maximum number of macro iterations of the VQEAdapt algorithm. - max_evals_grouped (
int
) – max number of evaluations performed simultaneously - aux_operators (
Optional
[List
[LegacyBaseOperator
]]) – Auxiliary operators to be evaluated at each eigenvalue - quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
Raises
- ValueError – if var_form_base is not an instance of UCCSD.
- See also – qiskit/chemistry/components/variational_forms/uccsd_adapt.py
Methods
__init__ (operator, var_form_base, optimizer) | type operatorLegacyBaseOperator |
cleanup_parameterized_circuits () | set parameterized circuits to None |
find_minimum ([initial_point, var_form, …]) | Optimize to find the minimum cost value. |
get_optimal_circuit () | get optimal circuit |
get_optimal_cost () | get optimal cost |
get_optimal_vector () | get optimal vector |
get_prob_vector_for_params (…[, …]) | Helper function to get probability vectors for a set of params |
get_probabilities_for_counts (counts) | get probabilities for counts |
run ([quantum_instance]) | Execute the algorithm with selected backend. |
set_backend (backend, **kwargs) | Sets backend with configuration. |
Attributes
backend | Returns backend. |
initial_point | Returns initial point |
optimal_params | returns optimal parameters |
optimizer | Returns optimizer |
quantum_instance | Returns quantum instance. |
random | Return a numpy random. |
var_form | Returns variational form |
backend
Returns backend.
Return type
Union
[Backend
, BaseBackend
]
cleanup_parameterized_circuits
cleanup_parameterized_circuits()
set parameterized circuits to None
find_minimum
find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)
Optimize to find the minimum cost value.
Parameters
- initial_point (
Optional
[ndarray
]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point. - var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – If not None will be used instead of any variational form supplied via constructor. - cost_fn (
Optional
[Callable
]) – If not None will be used instead of any cost_fn supplied via constructor. - optimizer (
Optional
[Optimizer
]) – If not None will be used instead of any optimizer supplied via constructor. - gradient_fn (
Optional
[Callable
]) – Optional gradient function for optimizer
Returns
Optimized variational parameters, and corresponding minimum cost value.
Return type
dict
Raises
ValueError – invalid input
get_optimal_circuit
get_optimal_circuit()
get optimal circuit
get_optimal_cost
get_optimal_cost()
get optimal cost
get_optimal_vector
get_optimal_vector()
get optimal vector
get_prob_vector_for_params
get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)
Helper function to get probability vectors for a set of params
get_probabilities_for_counts
get_probabilities_for_counts(counts)
get probabilities for counts
initial_point
Returns initial point
Return type
Optional
[ndarray
]
optimal_params
returns optimal parameters
optimizer
Returns optimizer
Return type
Optional
[Optimizer
]
quantum_instance
Returns quantum instance.
Return type
Optional
[QuantumInstance
]
random
Return a numpy random.
run
run(quantum_instance=None, **kwargs)
Execute the algorithm with selected backend.
Parameters
- quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – the experimental setting. - kwargs (dict) – kwargs
Returns
results of an algorithm.
Return type
dict
Raises
AquaError – If a quantum instance or backend has not been provided
set_backend
set_backend(backend, **kwargs)
Sets backend with configuration.
Return type
None
var_form
Returns variational form
Return type
Union
[QuantumCircuit
, VariationalForm
, None
]