Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

qiskit.chemistry.algorithms.VQEAdapt

class VQEAdapt(operator, var_form_base, optimizer, initial_point=None, excitation_pool=None, threshold=1e-05, delta=1, max_iterations=None, max_evals_grouped=1, aux_operators=None, quantum_instance=None)

GitHub

DEPRECATED. The Adaptive VQE algorithm.

See https://arxiv.org/abs/1812.11173

Parameters

  • operator (LegacyBaseOperator) – Qubit operator
  • var_form_base (VariationalForm) – base parameterized variational form
  • optimizer (Optimizer) – the classical optimizer algorithm
  • initial_point (Optional[ndarray]) – optimizer initial point
  • excitation_pool (Optional[List[WeightedPauliOperator]]) – list of excitation operators
  • threshold (float) – absolute threshold value for gradients, has a min. value of 1e-15.
  • delta (float) – finite difference step size for gradient computation, has a min. value of 1e-5.
  • max_iterations (Optional[int]) – maximum number of macro iterations of the VQEAdapt algorithm.
  • max_evals_grouped (int) – max number of evaluations performed simultaneously
  • aux_operators (Optional[List[LegacyBaseOperator]]) – Auxiliary operators to be evaluated at each eigenvalue
  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

Raises

  • ValueError – if var_form_base is not an instance of UCCSD.
  • See also – qiskit/chemistry/components/variational_forms/uccsd_adapt.py

__init__

__init__(operator, var_form_base, optimizer, initial_point=None, excitation_pool=None, threshold=1e-05, delta=1, max_iterations=None, max_evals_grouped=1, aux_operators=None, quantum_instance=None)

Parameters

  • operator (LegacyBaseOperator) – Qubit operator
  • var_form_base (VariationalForm) – base parameterized variational form
  • optimizer (Optimizer) – the classical optimizer algorithm
  • initial_point (Optional[ndarray]) – optimizer initial point
  • excitation_pool (Optional[List[WeightedPauliOperator]]) – list of excitation operators
  • threshold (float) – absolute threshold value for gradients, has a min. value of 1e-15.
  • delta (float) – finite difference step size for gradient computation, has a min. value of 1e-5.
  • max_iterations (Optional[int]) – maximum number of macro iterations of the VQEAdapt algorithm.
  • max_evals_grouped (int) – max number of evaluations performed simultaneously
  • aux_operators (Optional[List[LegacyBaseOperator]]) – Auxiliary operators to be evaluated at each eigenvalue
  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

Raises

  • ValueError – if var_form_base is not an instance of UCCSD.
  • See also – qiskit/chemistry/components/variational_forms/uccsd_adapt.py

Methods

__init__(operator, var_form_base, optimizer)type operatorLegacyBaseOperator
cleanup_parameterized_circuits()set parameterized circuits to None
find_minimum([initial_point, var_form, …])Optimize to find the minimum cost value.
get_optimal_circuit()get optimal circuit
get_optimal_cost()get optimal cost
get_optimal_vector()get optimal vector
get_prob_vector_for_params(…[, …])Helper function to get probability vectors for a set of params
get_probabilities_for_counts(counts)get probabilities for counts
run([quantum_instance])Execute the algorithm with selected backend.
set_backend(backend, **kwargs)Sets backend with configuration.

Attributes

backendReturns backend.
initial_pointReturns initial point
optimal_paramsreturns optimal parameters
optimizerReturns optimizer
quantum_instanceReturns quantum instance.
randomReturn a numpy random.
var_formReturns variational form

backend

Returns backend.

Return type

Union[Backend, BaseBackend]

cleanup_parameterized_circuits

cleanup_parameterized_circuits()

set parameterized circuits to None

find_minimum

find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)

Optimize to find the minimum cost value.

Parameters

  • initial_point (Optional[ndarray]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point.
  • var_form (Union[QuantumCircuit, VariationalForm, None]) – If not None will be used instead of any variational form supplied via constructor.
  • cost_fn (Optional[Callable]) – If not None will be used instead of any cost_fn supplied via constructor.
  • optimizer (Optional[Optimizer]) – If not None will be used instead of any optimizer supplied via constructor.
  • gradient_fn (Optional[Callable]) – Optional gradient function for optimizer

Returns

Optimized variational parameters, and corresponding minimum cost value.

Return type

dict

Raises

ValueError – invalid input

get_optimal_circuit

get_optimal_circuit()

get optimal circuit

get_optimal_cost

get_optimal_cost()

get optimal cost

get_optimal_vector

get_optimal_vector()

get optimal vector

get_prob_vector_for_params

get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)

Helper function to get probability vectors for a set of params

get_probabilities_for_counts

get_probabilities_for_counts(counts)

get probabilities for counts

initial_point

Returns initial point

Return type

Optional[ndarray]

optimal_params

returns optimal parameters

optimizer

Returns optimizer

Return type

Optional[Optimizer]

quantum_instance

Returns quantum instance.

Return type

Optional[QuantumInstance]

random

Return a numpy random.

run

run(quantum_instance=None, **kwargs)

Execute the algorithm with selected backend.

Parameters

  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – the experimental setting.
  • kwargs (dict) – kwargs

Returns

results of an algorithm.

Return type

dict

Raises

AquaError – If a quantum instance or backend has not been provided

set_backend

set_backend(backend, **kwargs)

Sets backend with configuration.

Return type

None

var_form

Returns variational form

Return type

Union[QuantumCircuit, VariationalForm, None]

Was this page helpful?
Report a bug or request content on GitHub.