QEomVQE
class QEomVQE(operator, var_form, optimizer, num_orbitals, num_particles, initial_point=None, max_evals_grouped=1, callback=None, qubit_mapping='parity', two_qubit_reduction=True, is_eom_matrix_symmetric=True, active_occupied=None, active_unoccupied=None, se_list=None, de_list=None, z2_symmetries=None, untapered_op=None, aux_operators=None, quantum_instance=None)
QEomVQE algorithm
Parameters
- operator (
LegacyBaseOperator
) – qubit operator - var_form (
Union
[QuantumCircuit
,VariationalForm
]) – parameterized variational form. - optimizer (
Optimizer
) – the classical optimization algorithm. - num_orbitals (
int
) – total number of spin orbitals, has a min. value of 1. - num_particles (
Union
[List
[int
],int
]) – number of particles, if it is a list, the first number is alpha and the second number if beta. - initial_point (
Optional
[ndarray
]) – optimizer initial point, 1-D vector - max_evals_grouped (
int
) – max number of evaluations performed simultaneously - callback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of evaluation, parameters of variational form, evaluated mean, evaluated standard deviation. - qubit_mapping (
str
) – qubit mapping type - two_qubit_reduction (
bool
) – two qubit reduction is applied or not - is_eom_matrix_symmetric (
bool
) – is EoM matrix symmetric - active_occupied (
Optional
[List
[int
]]) – list of occupied orbitals to include, indices are 0 to n where n is num particles // 2 - active_unoccupied (
Optional
[List
[int
]]) – list of unoccupied orbitals to include, indices are 0 to m where m is (num_orbitals - num particles) // 2 - se_list (
Optional
[List
[List
[int
]]]) – single excitation list, overwrite the setting in active space - de_list (
Optional
[List
[List
[int
]]]) – double excitation list, overwrite the setting in active space - z2_symmetries (
Optional
[Z2Symmetries
]) – represent the Z2 symmetries - untapered_op (
Optional
[LegacyBaseOperator
]) – if the operator is tapered, we need untapered operator during building element of EoM matrix - aux_operators (
Optional
[List
[LegacyBaseOperator
]]) – Auxiliary operators to be evaluated at each eigenvalue - quantum_instance (
Union
[QuantumInstance
,BaseBackend
,None
]) – Quantum Instance or Backend
Raises
ValueError – invalid parameter
Attributes
aux_operators
Type: Optional[List[Optional[qiskit.aqua.operators.operator_base.OperatorBase]]]
Returns aux operators
Return type
Optional
[List
[Optional
[OperatorBase
]]]
backend
expectation
Type: qiskit.aqua.operators.expectations.expectation_base.ExpectationBase
The expectation value algorithm used to construct the expectation measurement from the observable.
Return type
initial_point
Type: Optional[numpy.ndarray]
Returns initial point
Return type
Optional
[ndarray
]
operator
Type: Optional[qiskit.aqua.operators.operator_base.OperatorBase]
Returns operator
Return type
Optional
[OperatorBase
]
optimal_params
Type: List[float]
The optimal parameters for the variational form.
Return type
List
[float
]
optimizer
Type: Optional[qiskit.aqua.components.optimizers.optimizer.Optimizer]
Returns optimizer
Return type
Optional
[Optimizer
]
quantum_instance
Type: Union[None, qiskit.aqua.quantum_instance.QuantumInstance]
Returns quantum instance.
Return type
Optional
[QuantumInstance
]
random
Return a numpy random.
setting
Prepare the setting of VQE as a string.
var_form
Type: Optional[Union[qiskit.circuit.quantumcircuit.QuantumCircuit, qiskit.aqua.components.variational_forms.variational_form.VariationalForm]]
Returns variational form
Return type
Union
[QuantumCircuit
, VariationalForm
, None
]
Methods
cleanup_parameterized_circuits
QEomVQE.cleanup_parameterized_circuits()
set parameterized circuits to None
compute_minimum_eigenvalue
QEomVQE.compute_minimum_eigenvalue(operator=None, aux_operators=None)
Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‘remove’ a previous aux_operators array use an empty list here.
Parameters
- operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – If not None replaces operator in algorithm - aux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – If not None replaces aux_operators in algorithm
Return type
Returns
MinimumEigensolverResult
construct_circuit
QEomVQE.construct_circuit(parameter)
Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
Parameters
parameter (Union
[List
[float
], List
[Parameter
], ndarray
]) – Parameters for the ansatz circuit.
Return type
Returns
The Operator equalling the measurement of the ansatz StateFn
by the Observable’s expectation StateFn
.
Raises
AquaError – If no operator has been provided.
find_minimum
QEomVQE.find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)
Optimize to find the minimum cost value.
Parameters
- initial_point (
Optional
[ndarray
]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point. - var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – If not None will be used instead of any variational form supplied via constructor. - cost_fn (
Optional
[Callable
]) – If not None will be used instead of any cost_fn supplied via constructor. - optimizer (
Optional
[Optimizer
]) – If not None will be used instead of any optimizer supplied via constructor. - gradient_fn (
Optional
[Callable
]) – Optional gradient function for optimizer
Returns
Optimized variational parameters, and corresponding minimum cost value.
Return type
dict
Raises
ValueError – invalid input
get_optimal_circuit
get_optimal_cost
QEomVQE.get_optimal_cost()
Get the minimal cost or energy found by the VQE.
Return type
float
get_optimal_vector
QEomVQE.get_optimal_vector()
Get the simulation outcome of the optimal circuit.
Return type
Union
[List
[float
], Dict
[str
, int
]]
get_prob_vector_for_params
QEomVQE.get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)
Helper function to get probability vectors for a set of params
get_probabilities_for_counts
QEomVQE.get_probabilities_for_counts(counts)
get probabilities for counts
print_settings
QEomVQE.print_settings()
Preparing the setting of VQE into a string.
Returns
the formatted setting of VQE
Return type
str
run
QEomVQE.run(quantum_instance=None, **kwargs)
Execute the algorithm with selected backend.
Parameters
- quantum_instance (
Union
[QuantumInstance
,BaseBackend
,None
]) – the experimental setting. - kwargs (dict) – kwargs
Returns
results of an algorithm.
Return type
dict
Raises
AquaError – If a quantum instance or backend has not been provided
set_backend
QEomVQE.set_backend(backend, **kwargs)
Sets backend with configuration.
Return type
None
supports_aux_operators
QEomVQE.supports_aux_operators()
Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
Return type
bool
Returns
True if aux_operator expectations can be evaluated, False otherwise