Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

UnivariateVariationalDistribution

class UnivariateVariationalDistribution(num_qubits, var_form, params, low=0, high=1)

GitHub

The Univariate Variational Distribution.

Parameters

  • num_qubits (int) – Number of qubits
  • var_form (Union[QuantumCircuit, VariationalForm]) – Variational form
  • params (Union[List[float], ndarray]) – Parameters for variational form
  • low (float) – Lower bound
  • high (float) – Upper bound

Attributes

high

returns high

low

returns low

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

values

returns values


Methods

build

UnivariateVariationalDistribution.build(qc, q, q_ancillas=None, params=None)

build_controlled

UnivariateVariationalDistribution.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

UnivariateVariationalDistribution.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

UnivariateVariationalDistribution.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

UnivariateVariationalDistribution.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

UnivariateVariationalDistribution.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

UnivariateVariationalDistribution.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

UnivariateVariationalDistribution.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

UnivariateVariationalDistribution.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

UnivariateVariationalDistribution.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static UnivariateVariationalDistribution.pdf_to_probabilities(pdf, low, high, num_values)

Takes a probability density function (pdf), and returns a truncated and discretized array of probabilities corresponding to it

Parameters

  • pdf (function) – probability density function
  • low (float) – lower bound of equidistant grid
  • high (float) – upper bound of equidistant grid
  • num_values (int) – number of grid points

Returns

array of probabilities

Return type

list

required_ancillas

UnivariateVariationalDistribution.required_ancillas()

returns required ancillas

required_ancillas_controlled

UnivariateVariationalDistribution.required_ancillas_controlled()

returns required ancillas controlled

set_probabilities

UnivariateVariationalDistribution.set_probabilities(quantum_instance)

Set Probabilities

Parameters

quantum_instance (QuantumInstance) – Quantum instance

Was this page helpful?
Report a bug or request content on GitHub.