Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

UnivariateDistribution

class UnivariateDistribution(num_target_qubits, probabilities=None, low=0, high=1)

GitHub

This module contains the definition of a base class for univariate distributions. (Interface for discrete bounded uncertainty models assuming an equidistant grid)

Parameters

  • num_target_qubits (int) – Number of qubits it acts on, has a min. value of 1.
  • probabilities (Union[List[float], ndarray, None]) – Probabilities for different states
  • low (float) – Lower bound, i.e., the value corresponding to |0…0> (assuming an equidistant grid)
  • high (float) – Upper bound, i.e., the value corresponding to |1…1> (assuming an equidistant grid)

Raises

AquaError – num qubits and length of probabilities vector do not match


Attributes

high

returns high

low

returns low

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

values

returns values


Methods

build

UnivariateDistribution.build(qc, q, q_ancillas=None, params=None)

build_controlled

UnivariateDistribution.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

UnivariateDistribution.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

UnivariateDistribution.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

UnivariateDistribution.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

UnivariateDistribution.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

UnivariateDistribution.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

UnivariateDistribution.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

UnivariateDistribution.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

UnivariateDistribution.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static UnivariateDistribution.pdf_to_probabilities(pdf, low, high, num_values)

Takes a probability density function (pdf), and returns a truncated and discretized array of probabilities corresponding to it

Parameters

  • pdf (function) – probability density function
  • low (float) – lower bound of equidistant grid
  • high (float) – upper bound of equidistant grid
  • num_values (int) – number of grid points

Returns

array of probabilities

Return type

list

required_ancillas

UnivariateDistribution.required_ancillas()

returns required ancillas

required_ancillas_controlled

UnivariateDistribution.required_ancillas_controlled()

returns required ancillas controlled

Was this page helpful?
Report a bug or request content on GitHub.