Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

NormalDistribution

class NormalDistribution(num_target_qubits, mu=0, sigma=1, low=- 1, high=1)

GitHub

The Univariate Normal Distribution.

Normal distribution, truncated to lower and upper bound and discretized on a grid defined by the number of qubits.

Parameters

  • num_target_qubits (int) – Number of qubits it acts on, has a minimum value of 1.
  • mu (float) – Expected value of considered normal distribution
  • sigma (float) – standard deviation of considered normal distribution
  • low (float) – Lower bound, i.e., the value corresponding to |0…0> (assuming an equidistant grid)
  • high (float) – Upper bound, i.e., the value corresponding to |1…1> (assuming an equidistant grid)

Attributes

high

returns high

low

returns low

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

values

returns values


Methods

build

NormalDistribution.build(qc, q, q_ancillas=None, params=None)

build_controlled

NormalDistribution.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

NormalDistribution.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

NormalDistribution.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

NormalDistribution.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

NormalDistribution.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

NormalDistribution.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

NormalDistribution.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

NormalDistribution.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

NormalDistribution.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static NormalDistribution.pdf_to_probabilities(pdf, low, high, num_values)

Takes a probability density function (pdf), and returns a truncated and discretized array of probabilities corresponding to it

Parameters

  • pdf (function) – probability density function
  • low (float) – lower bound of equidistant grid
  • high (float) – upper bound of equidistant grid
  • num_values (int) – number of grid points

Returns

array of probabilities

Return type

list

required_ancillas

NormalDistribution.required_ancillas()

returns required ancillas

required_ancillas_controlled

NormalDistribution.required_ancillas_controlled()

returns required ancillas controlled

Was this page helpful?
Report a bug or request content on GitHub.