Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

MultivariateUniformDistribution

class MultivariateUniformDistribution(num_qubits, low=None, high=None)

GitHub

The Multivariate Uniform Distribution.

Although this just results in a Hadamard gate on all involved qubits, the lower and upper bounds and the assignment of the qubits to the different dimensions is important if used in a particular application.

Parameters

  • num_qubits (Union[List[int], ndarray]) – List with the number of qubits per dimension
  • low (Union[List[float], ndarray, None]) – List with the lower bounds per dimension, set to 0 for each dimension if None
  • high (Union[List[float], ndarray, None]) – List with the upper bounds per dimension, set to 1 for each dimension if None

Attributes

dimension

returns dimensions

high

returns high

low

returns low

num_qubits

returns num qubits

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

probabilities_vector

returns probabilities vector

values

returns values


Methods

build

MultivariateUniformDistribution.build(qc, q, q_ancillas=None, params=None)

build_controlled

MultivariateUniformDistribution.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

MultivariateUniformDistribution.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

MultivariateUniformDistribution.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

MultivariateUniformDistribution.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

MultivariateUniformDistribution.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

MultivariateUniformDistribution.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

MultivariateUniformDistribution.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

MultivariateUniformDistribution.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

MultivariateUniformDistribution.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static MultivariateUniformDistribution.pdf_to_probabilities(pdf, low, high, num_values)

pdf to probabilities

required_ancillas

MultivariateUniformDistribution.required_ancillas()

returns required ancillas

required_ancillas_controlled

MultivariateUniformDistribution.required_ancillas_controlled()

returns required ancillas controlled

Was this page helpful?
Report a bug or request content on GitHub.