Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

MultivariateNormalDistribution

class MultivariateNormalDistribution(num_qubits, low=None, high=None, mu=None, sigma=None)

GitHub

The Multivariate Normal Distribution.

Provides a discretized and truncated normal distribution loaded into a quantum state. Truncation bounds are given by lower and upper bound and discretization is specified by the number of qubits per dimension.

Parameters

  • num_qubits (Union[List[int], ndarray]) – Number of qubits per dimension
  • low (Union[List[float], ndarray, None]) – Lower bounds per dimension
  • high (Union[List[float], ndarray, None]) – Upper bounds per dimension
  • mu (Union[List[float], ndarray, None]) – Expected values
  • sigma (Union[List[float], ndarray, None]) – Co-variance matrix

Attributes

dimension

returns dimensions

high

returns high

low

returns low

num_qubits

returns num qubits

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

probabilities_vector

returns probabilities vector

values

returns values


Methods

build

MultivariateNormalDistribution.build(qc, q, q_ancillas=None, params=None)

build_controlled

MultivariateNormalDistribution.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

MultivariateNormalDistribution.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

MultivariateNormalDistribution.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

MultivariateNormalDistribution.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

MultivariateNormalDistribution.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

MultivariateNormalDistribution.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

MultivariateNormalDistribution.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

MultivariateNormalDistribution.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

MultivariateNormalDistribution.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static MultivariateNormalDistribution.pdf_to_probabilities(pdf, low, high, num_values)

pdf to probabilities

required_ancillas

MultivariateNormalDistribution.required_ancillas()

returns required ancillas

required_ancillas_controlled

MultivariateNormalDistribution.required_ancillas_controlled()

returns required ancillas controlled

Was this page helpful?
Report a bug or request content on GitHub.