GaussianConditionalIndependenceModel
class GaussianConditionalIndependenceModel(n_normal, normal_max_value, p_zeros, rhos, i_normal=None, i_ps=None)
The Gaussian Conditional Independence Model for Credit Risk.
Reference: https://arxiv.org/abs/1412.1183
Dependency between individual risk variables and latent variable is approximated linearly.
Parameters
- n_normal (
int
) – Number of qubits to represent the latent normal random variable Z - normal_max_value (
float
) – Min/max value to truncate the latent normal random variable Z - p_zeros (
Union
[List
[float
],ndarray
]) – Standard default probabilities for each asset - rhos (
Union
[List
[float
],ndarray
]) – Sensitivities of default probability of assets with respect to latent variable Z - i_normal (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent normal variable - i_ps (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent asset defaults
Attributes
dimension
returns dimensions
high
returns high
low
returns low
num_qubits
returns num qubits
num_target_qubits
Returns the number of target qubits
num_values
returns number of values
probabilities
returns probabilities
probabilities_vector
returns probabilities vector
values
returns values
Methods
build
GaussianConditionalIndependenceModel.build(qc, q, q_ancillas=None, params=None)
build_controlled
GaussianConditionalIndependenceModel.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)
Adds corresponding controlled sub-circuit to given circuit
Parameters
- qc (QuantumCircuit) – quantum circuit
- q (list) – list of qubits (has to be same length as self._num_qubits)
- q_control (Qubit) – control qubit
- q_ancillas (list) – list of ancilla qubits (or None if none needed)
- use_basis_gates (bool) – use basis gates for expansion of controlled circuit
build_controlled_inverse
GaussianConditionalIndependenceModel.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)
Adds controlled inverse of corresponding sub-circuit to given circuit
Parameters
- qc (QuantumCircuit) – quantum circuit
- q (list) – list of qubits (has to be same length as self._num_qubits)
- q_control (Qubit) – control qubit
- q_ancillas (list) – list of ancilla qubits (or None if none needed)
- use_basis_gates (bool) – use basis gates for expansion of controlled circuit
build_controlled_inverse_power
GaussianConditionalIndependenceModel.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)
Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible
build_controlled_power
GaussianConditionalIndependenceModel.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)
Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible
build_inverse
GaussianConditionalIndependenceModel.build_inverse(qc, q, q_ancillas=None)
Adds inverse of corresponding sub-circuit to given circuit
Parameters
- qc (QuantumCircuit) – quantum circuit
- q (list) – list of qubits (has to be same length as self._num_qubits)
- q_ancillas (list) – list of ancilla qubits (or None if none needed)
build_inverse_power
GaussianConditionalIndependenceModel.build_inverse_power(qc, q, power, q_ancillas=None)
Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible
build_power
GaussianConditionalIndependenceModel.build_power(qc, q, power, q_ancillas=None)
Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible
get_num_qubits
GaussianConditionalIndependenceModel.get_num_qubits()
returns number of qubits
get_num_qubits_controlled
GaussianConditionalIndependenceModel.get_num_qubits_controlled()
returns number of qubits controlled
pdf_to_probabilities
static GaussianConditionalIndependenceModel.pdf_to_probabilities(pdf, low, high, num_values)
pdf to probabilities
required_ancillas
GaussianConditionalIndependenceModel.required_ancillas()
returns required ancillas
required_ancillas_controlled
GaussianConditionalIndependenceModel.required_ancillas_controlled()
returns required ancillas controlled