Skip to main contentIBM Quantum Documentation
This page is from an old version of Qiskit SDK and does not exist in the latest version. We recommend you migrate to the latest version. See the release notes for more information.

GaussianConditionalIndependenceModel

class GaussianConditionalIndependenceModel(n_normal, normal_max_value, p_zeros, rhos, i_normal=None, i_ps=None)

GitHub

The Gaussian Conditional Independence Model for Credit Risk.

Reference: https://arxiv.org/abs/1412.1183

Dependency between individual risk variables and latent variable is approximated linearly.

Parameters

  • n_normal (int) – Number of qubits to represent the latent normal random variable Z
  • normal_max_value (float) – Min/max value to truncate the latent normal random variable Z
  • p_zeros (Union[List[float], ndarray]) – Standard default probabilities for each asset
  • rhos (Union[List[float], ndarray]) – Sensitivities of default probability of assets with respect to latent variable Z
  • i_normal (Union[List[float], ndarray, None]) – Indices of qubits to represent normal variable
  • i_ps (Union[List[float], ndarray, None]) – Indices of qubits to represent asset defaults

Attributes

dimension

returns dimensions

high

returns high

low

returns low

num_qubits

returns num qubits

num_target_qubits

Returns the number of target qubits

num_values

returns number of values

probabilities

returns probabilities

probabilities_vector

returns probabilities vector

values

returns values


Methods

build

GaussianConditionalIndependenceModel.build(qc, q, q_ancillas=None, params=None)

build_controlled

GaussianConditionalIndependenceModel.build_controlled(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds corresponding controlled sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse

GaussianConditionalIndependenceModel.build_controlled_inverse(qc, q, q_control, q_ancillas=None, use_basis_gates=True)

Adds controlled inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_control (Qubit) – control qubit
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)
  • use_basis_gates (bool) – use basis gates for expansion of controlled circuit

build_controlled_inverse_power

GaussianConditionalIndependenceModel.build_controlled_inverse_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_controlled_power

GaussianConditionalIndependenceModel.build_controlled_power(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)

Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_inverse

GaussianConditionalIndependenceModel.build_inverse(qc, q, q_ancillas=None)

Adds inverse of corresponding sub-circuit to given circuit

Parameters

  • qc (QuantumCircuit) – quantum circuit
  • q (list) – list of qubits (has to be same length as self._num_qubits)
  • q_ancillas (list) – list of ancilla qubits (or None if none needed)

build_inverse_power

GaussianConditionalIndependenceModel.build_inverse_power(qc, q, power, q_ancillas=None)

Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible

build_power

GaussianConditionalIndependenceModel.build_power(qc, q, power, q_ancillas=None)

Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible

get_num_qubits

GaussianConditionalIndependenceModel.get_num_qubits()

returns number of qubits

get_num_qubits_controlled

GaussianConditionalIndependenceModel.get_num_qubits_controlled()

returns number of qubits controlled

pdf_to_probabilities

static GaussianConditionalIndependenceModel.pdf_to_probabilities(pdf, low, high, num_values)

pdf to probabilities

required_ancillas

GaussianConditionalIndependenceModel.required_ancillas()

returns required ancillas

required_ancillas_controlled

GaussianConditionalIndependenceModel.required_ancillas_controlled()

returns required ancillas controlled

Was this page helpful?
Report a bug or request content on GitHub.